DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair

The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2003-04, Vol.31 (8), p.2025-2034
Hauptverfasser: Hall, Mark C., Shcherbakova, Polina V., Fortune, John M., Borchers, Christoph H., Dial, J. Michael, Tomer, Kenneth B., Kunkel, Thomas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2034
container_issue 8
container_start_page 2025
container_title Nucleic acids research
container_volume 31
creator Hall, Mark C.
Shcherbakova, Polina V.
Fortune, John M.
Borchers, Christoph H.
Dial, J. Michael
Tomer, Kenneth B.
Kunkel, Thomas A.
description The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization and with different affinities. Full‐length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full‐length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C‐terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.
doi_str_mv 10.1093/nar/gkg324
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_153752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73184643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-f720410b00fa1b5f7fe78748b70f2fc2d7349f7866e0494009b0b397f0c183a83</originalsourceid><addsrcrecordid>eNqFkUFvEzEQha0K1IbChR-ALA49IC2dsb22F6mHqlCC1AKHIlW9WN6Nnbjd9ab2BpF_z4ZEBXrpaQ7zvad58wh5jfAeoeLH0abj-d2cM7FHJsglK0Ql2TMyAQ5lgSD0AXmR8y0ACizFPjlAJjXjJZ-Q6cevp7QOcRbinNZrunY2D_SyXSC1cUa_dxk_0NAt29DYIfQxU98nuhF1IXd2aBY0uaUN6SV57m2b3avdPCQ_zj9dnU2Li2-fv5ydXhSNkNVQeMVAINQA3mJdeuWd0kroWoFnvmEzxUXllZbSgagEQFVDzSvloUHNreaH5GTru1zVnZs1Lg7JtmaZQmfT2vQ2mP83MSzMvP9psOSqZKP-aKdP_f3K5cGMQRrXtja6fpWN4qiFFPxJELVCZGrj-PYReNuvUhyfYBhAqQX-cXu3hZrU55ycf7gYwWxaNGOLZtviCL_5N-NfdFfbCBRbIOTB_XrY23RnpBpjmun1jTnnUl1ecWWQ_wbmd6XE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200584143</pqid></control><display><type>article</type><title>DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hall, Mark C. ; Shcherbakova, Polina V. ; Fortune, John M. ; Borchers, Christoph H. ; Dial, J. Michael ; Tomer, Kenneth B. ; Kunkel, Thomas A.</creator><creatorcontrib>Hall, Mark C. ; Shcherbakova, Polina V. ; Fortune, John M. ; Borchers, Christoph H. ; Dial, J. Michael ; Tomer, Kenneth B. ; Kunkel, Thomas A.</creatorcontrib><description>The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization and with different affinities. Full‐length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full‐length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C‐terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkg324</identifier><identifier>PMID: 12682353</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Amino Acid Substitution ; Base Pair Mismatch - genetics ; Binding Sites - genetics ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Dimerization ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA Repair ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; MutL Protein Homolog 1 ; Nucleic Acid Conformation ; Peptide Fragments - metabolism ; Protein Binding - genetics ; Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid</subject><ispartof>Nucleic acids research, 2003-04, Vol.31 (8), p.2025-2034</ispartof><rights>Copyright Oxford University Press(England) Apr 15, 2003</rights><rights>Copyright © 2003 Oxford University Press 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-f720410b00fa1b5f7fe78748b70f2fc2d7349f7866e0494009b0b397f0c183a83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC153752/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC153752/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12682353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Mark C.</creatorcontrib><creatorcontrib>Shcherbakova, Polina V.</creatorcontrib><creatorcontrib>Fortune, John M.</creatorcontrib><creatorcontrib>Borchers, Christoph H.</creatorcontrib><creatorcontrib>Dial, J. Michael</creatorcontrib><creatorcontrib>Tomer, Kenneth B.</creatorcontrib><creatorcontrib>Kunkel, Thomas A.</creatorcontrib><title>DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization and with different affinities. Full‐length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full‐length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C‐terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Base Pair Mismatch - genetics</subject><subject>Binding Sites - genetics</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Repair</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>MutL Protein Homolog 1</subject><subject>Nucleic Acid Conformation</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein Binding - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Homology, Amino Acid</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvEzEQha0K1IbChR-ALA49IC2dsb22F6mHqlCC1AKHIlW9WN6Nnbjd9ab2BpF_z4ZEBXrpaQ7zvad58wh5jfAeoeLH0abj-d2cM7FHJsglK0Ql2TMyAQ5lgSD0AXmR8y0ACizFPjlAJjXjJZ-Q6cevp7QOcRbinNZrunY2D_SyXSC1cUa_dxk_0NAt29DYIfQxU98nuhF1IXd2aBY0uaUN6SV57m2b3avdPCQ_zj9dnU2Li2-fv5ydXhSNkNVQeMVAINQA3mJdeuWd0kroWoFnvmEzxUXllZbSgagEQFVDzSvloUHNreaH5GTru1zVnZs1Lg7JtmaZQmfT2vQ2mP83MSzMvP9psOSqZKP-aKdP_f3K5cGMQRrXtja6fpWN4qiFFPxJELVCZGrj-PYReNuvUhyfYBhAqQX-cXu3hZrU55ycf7gYwWxaNGOLZtviCL_5N-NfdFfbCBRbIOTB_XrY23RnpBpjmun1jTnnUl1ecWWQ_wbmd6XE</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Hall, Mark C.</creator><creator>Shcherbakova, Polina V.</creator><creator>Fortune, John M.</creator><creator>Borchers, Christoph H.</creator><creator>Dial, J. Michael</creator><creator>Tomer, Kenneth B.</creator><creator>Kunkel, Thomas A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030415</creationdate><title>DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair</title><author>Hall, Mark C. ; Shcherbakova, Polina V. ; Fortune, John M. ; Borchers, Christoph H. ; Dial, J. Michael ; Tomer, Kenneth B. ; Kunkel, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-f720410b00fa1b5f7fe78748b70f2fc2d7349f7866e0494009b0b397f0c183a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Base Pair Mismatch - genetics</topic><topic>Binding Sites - genetics</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Repair</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>MutL Protein Homolog 1</topic><topic>Nucleic Acid Conformation</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein Binding - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Mark C.</creatorcontrib><creatorcontrib>Shcherbakova, Polina V.</creatorcontrib><creatorcontrib>Fortune, John M.</creatorcontrib><creatorcontrib>Borchers, Christoph H.</creatorcontrib><creatorcontrib>Dial, J. Michael</creatorcontrib><creatorcontrib>Tomer, Kenneth B.</creatorcontrib><creatorcontrib>Kunkel, Thomas A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Mark C.</au><au>Shcherbakova, Polina V.</au><au>Fortune, John M.</au><au>Borchers, Christoph H.</au><au>Dial, J. Michael</au><au>Tomer, Kenneth B.</au><au>Kunkel, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2003-04-15</date><risdate>2003</risdate><volume>31</volume><issue>8</issue><spage>2025</spage><epage>2034</epage><pages>2025-2034</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization and with different affinities. Full‐length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full‐length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C‐terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12682353</pmid><doi>10.1093/nar/gkg324</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2003-04, Vol.31 (8), p.2025-2034
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_153752
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptor Proteins, Signal Transducing
Amino Acid Sequence
Amino Acid Substitution
Base Pair Mismatch - genetics
Binding Sites - genetics
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Dimerization
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA Repair
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Models, Molecular
Molecular Sequence Data
Mutation
MutL Protein Homolog 1
Nucleic Acid Conformation
Peptide Fragments - metabolism
Protein Binding - genetics
Saccharomyces cerevisiae Proteins
Sequence Homology, Amino Acid
title DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20binding%20by%20yeast%20Mlh1%20and%20Pms1:%20implications%20for%20DNA%20mismatch%20repair&rft.jtitle=Nucleic%20acids%20research&rft.au=Hall,%20Mark%20C.&rft.date=2003-04-15&rft.volume=31&rft.issue=8&rft.spage=2025&rft.epage=2034&rft.pages=2025-2034&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkg324&rft_dat=%3Cproquest_pubme%3E73184643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200584143&rft_id=info:pmid/12682353&rfr_iscdi=true