DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair
The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2003-04, Vol.31 (8), p.2025-2034 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2034 |
---|---|
container_issue | 8 |
container_start_page | 2025 |
container_title | Nucleic acids research |
container_volume | 31 |
creator | Hall, Mark C. Shcherbakova, Polina V. Fortune, John M. Borchers, Christoph H. Dial, J. Michael Tomer, Kenneth B. Kunkel, Thomas A. |
description | The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization and with different affinities. Full‐length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full‐length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C‐terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR. |
doi_str_mv | 10.1093/nar/gkg324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_153752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73184643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-f720410b00fa1b5f7fe78748b70f2fc2d7349f7866e0494009b0b397f0c183a83</originalsourceid><addsrcrecordid>eNqFkUFvEzEQha0K1IbChR-ALA49IC2dsb22F6mHqlCC1AKHIlW9WN6Nnbjd9ab2BpF_z4ZEBXrpaQ7zvad58wh5jfAeoeLH0abj-d2cM7FHJsglK0Ql2TMyAQ5lgSD0AXmR8y0ACizFPjlAJjXjJZ-Q6cevp7QOcRbinNZrunY2D_SyXSC1cUa_dxk_0NAt29DYIfQxU98nuhF1IXd2aBY0uaUN6SV57m2b3avdPCQ_zj9dnU2Li2-fv5ydXhSNkNVQeMVAINQA3mJdeuWd0kroWoFnvmEzxUXllZbSgagEQFVDzSvloUHNreaH5GTru1zVnZs1Lg7JtmaZQmfT2vQ2mP83MSzMvP9psOSqZKP-aKdP_f3K5cGMQRrXtja6fpWN4qiFFPxJELVCZGrj-PYReNuvUhyfYBhAqQX-cXu3hZrU55ycf7gYwWxaNGOLZtviCL_5N-NfdFfbCBRbIOTB_XrY23RnpBpjmun1jTnnUl1ecWWQ_wbmd6XE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200584143</pqid></control><display><type>article</type><title>DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hall, Mark C. ; Shcherbakova, Polina V. ; Fortune, John M. ; Borchers, Christoph H. ; Dial, J. Michael ; Tomer, Kenneth B. ; Kunkel, Thomas A.</creator><creatorcontrib>Hall, Mark C. ; Shcherbakova, Polina V. ; Fortune, John M. ; Borchers, Christoph H. ; Dial, J. Michael ; Tomer, Kenneth B. ; Kunkel, Thomas A.</creatorcontrib><description>The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization and with different affinities. Full‐length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full‐length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C‐terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkg324</identifier><identifier>PMID: 12682353</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Amino Acid Substitution ; Base Pair Mismatch - genetics ; Binding Sites - genetics ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Dimerization ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA Repair ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; MutL Protein Homolog 1 ; Nucleic Acid Conformation ; Peptide Fragments - metabolism ; Protein Binding - genetics ; Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid</subject><ispartof>Nucleic acids research, 2003-04, Vol.31 (8), p.2025-2034</ispartof><rights>Copyright Oxford University Press(England) Apr 15, 2003</rights><rights>Copyright © 2003 Oxford University Press 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-f720410b00fa1b5f7fe78748b70f2fc2d7349f7866e0494009b0b397f0c183a83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC153752/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC153752/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12682353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Mark C.</creatorcontrib><creatorcontrib>Shcherbakova, Polina V.</creatorcontrib><creatorcontrib>Fortune, John M.</creatorcontrib><creatorcontrib>Borchers, Christoph H.</creatorcontrib><creatorcontrib>Dial, J. Michael</creatorcontrib><creatorcontrib>Tomer, Kenneth B.</creatorcontrib><creatorcontrib>Kunkel, Thomas A.</creatorcontrib><title>DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization and with different affinities. Full‐length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full‐length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C‐terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Base Pair Mismatch - genetics</subject><subject>Binding Sites - genetics</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Repair</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>MutL Protein Homolog 1</subject><subject>Nucleic Acid Conformation</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein Binding - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Homology, Amino Acid</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvEzEQha0K1IbChR-ALA49IC2dsb22F6mHqlCC1AKHIlW9WN6Nnbjd9ab2BpF_z4ZEBXrpaQ7zvad58wh5jfAeoeLH0abj-d2cM7FHJsglK0Ql2TMyAQ5lgSD0AXmR8y0ACizFPjlAJjXjJZ-Q6cevp7QOcRbinNZrunY2D_SyXSC1cUa_dxk_0NAt29DYIfQxU98nuhF1IXd2aBY0uaUN6SV57m2b3avdPCQ_zj9dnU2Li2-fv5ydXhSNkNVQeMVAINQA3mJdeuWd0kroWoFnvmEzxUXllZbSgagEQFVDzSvloUHNreaH5GTru1zVnZs1Lg7JtmaZQmfT2vQ2mP83MSzMvP9psOSqZKP-aKdP_f3K5cGMQRrXtja6fpWN4qiFFPxJELVCZGrj-PYReNuvUhyfYBhAqQX-cXu3hZrU55ycf7gYwWxaNGOLZtviCL_5N-NfdFfbCBRbIOTB_XrY23RnpBpjmun1jTnnUl1ecWWQ_wbmd6XE</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Hall, Mark C.</creator><creator>Shcherbakova, Polina V.</creator><creator>Fortune, John M.</creator><creator>Borchers, Christoph H.</creator><creator>Dial, J. Michael</creator><creator>Tomer, Kenneth B.</creator><creator>Kunkel, Thomas A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030415</creationdate><title>DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair</title><author>Hall, Mark C. ; Shcherbakova, Polina V. ; Fortune, John M. ; Borchers, Christoph H. ; Dial, J. Michael ; Tomer, Kenneth B. ; Kunkel, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-f720410b00fa1b5f7fe78748b70f2fc2d7349f7866e0494009b0b397f0c183a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Base Pair Mismatch - genetics</topic><topic>Binding Sites - genetics</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Repair</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>MutL Protein Homolog 1</topic><topic>Nucleic Acid Conformation</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein Binding - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Mark C.</creatorcontrib><creatorcontrib>Shcherbakova, Polina V.</creatorcontrib><creatorcontrib>Fortune, John M.</creatorcontrib><creatorcontrib>Borchers, Christoph H.</creatorcontrib><creatorcontrib>Dial, J. Michael</creatorcontrib><creatorcontrib>Tomer, Kenneth B.</creatorcontrib><creatorcontrib>Kunkel, Thomas A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Mark C.</au><au>Shcherbakova, Polina V.</au><au>Fortune, John M.</au><au>Borchers, Christoph H.</au><au>Dial, J. Michael</au><au>Tomer, Kenneth B.</au><au>Kunkel, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2003-04-15</date><risdate>2003</risdate><volume>31</volume><issue>8</issue><spage>2025</spage><epage>2034</epage><pages>2025-2034</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N‐terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N‐terminal domains (NTDs) independently bind to double‐stranded and single‐stranded DNA, in the absence of dimerization and with different affinities. Full‐length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full‐length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C‐terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12682353</pmid><doi>10.1093/nar/gkg324</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2003-04, Vol.31 (8), p.2025-2034 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_153752 |
source | MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptor Proteins, Signal Transducing Amino Acid Sequence Amino Acid Substitution Base Pair Mismatch - genetics Binding Sites - genetics Carrier Proteins - chemistry Carrier Proteins - genetics Carrier Proteins - metabolism Dimerization DNA - chemistry DNA - genetics DNA - metabolism DNA Repair Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism Models, Molecular Molecular Sequence Data Mutation MutL Protein Homolog 1 Nucleic Acid Conformation Peptide Fragments - metabolism Protein Binding - genetics Saccharomyces cerevisiae Proteins Sequence Homology, Amino Acid |
title | DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20binding%20by%20yeast%20Mlh1%20and%20Pms1:%20implications%20for%20DNA%20mismatch%20repair&rft.jtitle=Nucleic%20acids%20research&rft.au=Hall,%20Mark%20C.&rft.date=2003-04-15&rft.volume=31&rft.issue=8&rft.spage=2025&rft.epage=2034&rft.pages=2025-2034&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkg324&rft_dat=%3Cproquest_pubme%3E73184643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200584143&rft_id=info:pmid/12682353&rfr_iscdi=true |