network of rice genes associated with stress response and seed development
We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-04, Vol.100 (8), p.4945-4950 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4950 |
---|---|
container_issue | 8 |
container_start_page | 4945 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Cooper, B Clarke, J.D Budworth, P Kreps, J Hutchison, D Park, S Guimil, S Dunn, M Luginbuhl, P Ellero, C |
description | We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis. |
doi_str_mv | 10.1073/pnas.0737574100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_153660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3144046</jstor_id><sourcerecordid>3144046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-bf1d529d0ee4fc6822313b9786bc94c4ceb37de5ff8c5baaddd187519353ff0e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EosPAmg2CiAWs0l4_kyxYoIqnKrGAri3Hvp5myMTBTlr49ziaUaewgI1t6Xzn-D4IeUrhlELFz8bBpNP8qGQlKMA9sqLQ0FKJBu6TFQCrylowcUIepbQFgEbW8JCcUKZqIXm9Ip8HnG5C_F4EX8TOYrHBAVNhUgq2MxO64qabroo0RUypyMcYhoSFGVyRMKsOr7EP4w6H6TF54E2f8MnhXpPL9---nX8sL758-HT-9qK0UqipbD11kjUOEIW3qmaMU942Va1a2wgrLLa8cii9r61sjXHO0bqStOGSew_I1-TNPnec2x06m7-Optdj7HYm_tLBdPpPZeiu9CZcayq5UpD9rw7-GH7MmCa965LFvjcDhjnpijPgquL_BXNZTCq2JL78C9yGOQ55CJoB5VwJsaSd7SEbQ0oR_W3FFPSyTL0sUx-XmR3P7zZ65A_buwMszmMc6FqLJiNr8vqfgPZz30_4c8rksz25TVOItyinQoBQWX6xl70J2mxil_Tl16U3oKCEzJP9DRf9xsE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201336443</pqid></control><display><type>article</type><title>network of rice genes associated with stress response and seed development</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cooper, B ; Clarke, J.D ; Budworth, P ; Kreps, J ; Hutchison, D ; Park, S ; Guimil, S ; Dunn, M ; Luginbuhl, P ; Ellero, C</creator><creatorcontrib>Cooper, B ; Clarke, J.D ; Budworth, P ; Kreps, J ; Hutchison, D ; Park, S ; Guimil, S ; Dunn, M ; Luginbuhl, P ; Ellero, C</creatorcontrib><description>We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0737574100</identifier><identifier>PMID: 12684538</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>14-3-3 Proteins ; Amino acids ; Arabidopsis - genetics ; Arabidopsis thaliana ; Biological Sciences ; Biology ; Blasts ; cold stress ; Disease resistance ; DNA, Plant - genetics ; fungal diseases of plants ; Gene Expression ; Gene expression regulation ; gene induction ; Genes ; Genes, Plant ; Genetics ; infection ; Magnaporthe grisea ; Molecular Sequence Data ; nucleotide sequences ; Oryza - genetics ; Oryza - growth & development ; Oryza - metabolism ; Oryza sativa ; osmotic pressure ; Phenotype ; Phosphoprotein Phosphatases - chemistry ; Phosphoprotein Phosphatases - genetics ; Phosphoprotein Phosphatases - metabolism ; Plant cells ; Plant Diseases - genetics ; plant hormones ; Plant Proteins - genetics ; Plant Proteins - metabolism ; plant stress ; Plants, Genetically Modified ; Protein Subunits ; Proteins ; Pseudomonas syringae pv. maculicola ; Quantitative Trait Loci ; Rice ; salinity ; salt stress ; seed development ; Seeds ; Seeds - growth & development ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Two-Hybrid System Techniques ; Tyrosine 3-Monooxygenase - genetics ; Tyrosine 3-Monooxygenase - metabolism ; water stress ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-04, Vol.100 (8), p.4945-4950</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 15, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-bf1d529d0ee4fc6822313b9786bc94c4ceb37de5ff8c5baaddd187519353ff0e3</citedby><cites>FETCH-LOGICAL-c546t-bf1d529d0ee4fc6822313b9786bc94c4ceb37de5ff8c5baaddd187519353ff0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3144046$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3144046$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12684538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, B</creatorcontrib><creatorcontrib>Clarke, J.D</creatorcontrib><creatorcontrib>Budworth, P</creatorcontrib><creatorcontrib>Kreps, J</creatorcontrib><creatorcontrib>Hutchison, D</creatorcontrib><creatorcontrib>Park, S</creatorcontrib><creatorcontrib>Guimil, S</creatorcontrib><creatorcontrib>Dunn, M</creatorcontrib><creatorcontrib>Luginbuhl, P</creatorcontrib><creatorcontrib>Ellero, C</creatorcontrib><title>network of rice genes associated with stress response and seed development</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.</description><subject>14-3-3 Proteins</subject><subject>Amino acids</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Blasts</subject><subject>cold stress</subject><subject>Disease resistance</subject><subject>DNA, Plant - genetics</subject><subject>fungal diseases of plants</subject><subject>Gene Expression</subject><subject>Gene expression regulation</subject><subject>gene induction</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetics</subject><subject>infection</subject><subject>Magnaporthe grisea</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Oryza - genetics</subject><subject>Oryza - growth & development</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>osmotic pressure</subject><subject>Phenotype</subject><subject>Phosphoprotein Phosphatases - chemistry</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Plant cells</subject><subject>Plant Diseases - genetics</subject><subject>plant hormones</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>plant stress</subject><subject>Plants, Genetically Modified</subject><subject>Protein Subunits</subject><subject>Proteins</subject><subject>Pseudomonas syringae pv. maculicola</subject><subject>Quantitative Trait Loci</subject><subject>Rice</subject><subject>salinity</subject><subject>salt stress</subject><subject>seed development</subject><subject>Seeds</subject><subject>Seeds - growth & development</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Two-Hybrid System Techniques</subject><subject>Tyrosine 3-Monooxygenase - genetics</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>water stress</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EosPAmg2CiAWs0l4_kyxYoIqnKrGAri3Hvp5myMTBTlr49ziaUaewgI1t6Xzn-D4IeUrhlELFz8bBpNP8qGQlKMA9sqLQ0FKJBu6TFQCrylowcUIepbQFgEbW8JCcUKZqIXm9Ip8HnG5C_F4EX8TOYrHBAVNhUgq2MxO64qabroo0RUypyMcYhoSFGVyRMKsOr7EP4w6H6TF54E2f8MnhXpPL9---nX8sL758-HT-9qK0UqipbD11kjUOEIW3qmaMU942Va1a2wgrLLa8cii9r61sjXHO0bqStOGSew_I1-TNPnec2x06m7-Optdj7HYm_tLBdPpPZeiu9CZcayq5UpD9rw7-GH7MmCa965LFvjcDhjnpijPgquL_BXNZTCq2JL78C9yGOQ55CJoB5VwJsaSd7SEbQ0oR_W3FFPSyTL0sUx-XmR3P7zZ65A_buwMszmMc6FqLJiNr8vqfgPZz30_4c8rksz25TVOItyinQoBQWX6xl70J2mxil_Tl16U3oKCEzJP9DRf9xsE</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Cooper, B</creator><creator>Clarke, J.D</creator><creator>Budworth, P</creator><creator>Kreps, J</creator><creator>Hutchison, D</creator><creator>Park, S</creator><creator>Guimil, S</creator><creator>Dunn, M</creator><creator>Luginbuhl, P</creator><creator>Ellero, C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030415</creationdate><title>network of rice genes associated with stress response and seed development</title><author>Cooper, B ; Clarke, J.D ; Budworth, P ; Kreps, J ; Hutchison, D ; Park, S ; Guimil, S ; Dunn, M ; Luginbuhl, P ; Ellero, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-bf1d529d0ee4fc6822313b9786bc94c4ceb37de5ff8c5baaddd187519353ff0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>14-3-3 Proteins</topic><topic>Amino acids</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Blasts</topic><topic>cold stress</topic><topic>Disease resistance</topic><topic>DNA, Plant - genetics</topic><topic>fungal diseases of plants</topic><topic>Gene Expression</topic><topic>Gene expression regulation</topic><topic>gene induction</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetics</topic><topic>infection</topic><topic>Magnaporthe grisea</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Oryza - genetics</topic><topic>Oryza - growth & development</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>osmotic pressure</topic><topic>Phenotype</topic><topic>Phosphoprotein Phosphatases - chemistry</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Plant cells</topic><topic>Plant Diseases - genetics</topic><topic>plant hormones</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>plant stress</topic><topic>Plants, Genetically Modified</topic><topic>Protein Subunits</topic><topic>Proteins</topic><topic>Pseudomonas syringae pv. maculicola</topic><topic>Quantitative Trait Loci</topic><topic>Rice</topic><topic>salinity</topic><topic>salt stress</topic><topic>seed development</topic><topic>Seeds</topic><topic>Seeds - growth & development</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Two-Hybrid System Techniques</topic><topic>Tyrosine 3-Monooxygenase - genetics</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>water stress</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, B</creatorcontrib><creatorcontrib>Clarke, J.D</creatorcontrib><creatorcontrib>Budworth, P</creatorcontrib><creatorcontrib>Kreps, J</creatorcontrib><creatorcontrib>Hutchison, D</creatorcontrib><creatorcontrib>Park, S</creatorcontrib><creatorcontrib>Guimil, S</creatorcontrib><creatorcontrib>Dunn, M</creatorcontrib><creatorcontrib>Luginbuhl, P</creatorcontrib><creatorcontrib>Ellero, C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, B</au><au>Clarke, J.D</au><au>Budworth, P</au><au>Kreps, J</au><au>Hutchison, D</au><au>Park, S</au><au>Guimil, S</au><au>Dunn, M</au><au>Luginbuhl, P</au><au>Ellero, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>network of rice genes associated with stress response and seed development</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-04-15</date><risdate>2003</risdate><volume>100</volume><issue>8</issue><spage>4945</spage><epage>4950</epage><pages>4945-4950</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12684538</pmid><doi>10.1073/pnas.0737574100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-04, Vol.100 (8), p.4945-4950 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_153660 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 14-3-3 Proteins Amino acids Arabidopsis - genetics Arabidopsis thaliana Biological Sciences Biology Blasts cold stress Disease resistance DNA, Plant - genetics fungal diseases of plants Gene Expression Gene expression regulation gene induction Genes Genes, Plant Genetics infection Magnaporthe grisea Molecular Sequence Data nucleotide sequences Oryza - genetics Oryza - growth & development Oryza - metabolism Oryza sativa osmotic pressure Phenotype Phosphoprotein Phosphatases - chemistry Phosphoprotein Phosphatases - genetics Phosphoprotein Phosphatases - metabolism Plant cells Plant Diseases - genetics plant hormones Plant Proteins - genetics Plant Proteins - metabolism plant stress Plants, Genetically Modified Protein Subunits Proteins Pseudomonas syringae pv. maculicola Quantitative Trait Loci Rice salinity salt stress seed development Seeds Seeds - growth & development Transcription Factors - genetics Transcription Factors - metabolism Two-Hybrid System Techniques Tyrosine 3-Monooxygenase - genetics Tyrosine 3-Monooxygenase - metabolism water stress Yeasts |
title | network of rice genes associated with stress response and seed development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=network%20of%20rice%20genes%20associated%20with%20stress%20response%20and%20seed%20development&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cooper,%20B&rft.date=2003-04-15&rft.volume=100&rft.issue=8&rft.spage=4945&rft.epage=4950&rft.pages=4945-4950&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0737574100&rft_dat=%3Cjstor_pubme%3E3144046%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201336443&rft_id=info:pmid/12684538&rft_jstor_id=3144046&rfr_iscdi=true |