network of rice genes associated with stress response and seed development

We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-04, Vol.100 (8), p.4945-4950
Hauptverfasser: Cooper, B, Clarke, J.D, Budworth, P, Kreps, J, Hutchison, D, Park, S, Guimil, S, Dunn, M, Luginbuhl, P, Ellero, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4950
container_issue 8
container_start_page 4945
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Cooper, B
Clarke, J.D
Budworth, P
Kreps, J
Hutchison, D
Park, S
Guimil, S
Dunn, M
Luginbuhl, P
Ellero, C
description We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.
doi_str_mv 10.1073/pnas.0737574100
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_153660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3144046</jstor_id><sourcerecordid>3144046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-bf1d529d0ee4fc6822313b9786bc94c4ceb37de5ff8c5baaddd187519353ff0e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EosPAmg2CiAWs0l4_kyxYoIqnKrGAri3Hvp5myMTBTlr49ziaUaewgI1t6Xzn-D4IeUrhlELFz8bBpNP8qGQlKMA9sqLQ0FKJBu6TFQCrylowcUIepbQFgEbW8JCcUKZqIXm9Ip8HnG5C_F4EX8TOYrHBAVNhUgq2MxO64qabroo0RUypyMcYhoSFGVyRMKsOr7EP4w6H6TF54E2f8MnhXpPL9---nX8sL758-HT-9qK0UqipbD11kjUOEIW3qmaMU942Va1a2wgrLLa8cii9r61sjXHO0bqStOGSew_I1-TNPnec2x06m7-Optdj7HYm_tLBdPpPZeiu9CZcayq5UpD9rw7-GH7MmCa965LFvjcDhjnpijPgquL_BXNZTCq2JL78C9yGOQ55CJoB5VwJsaSd7SEbQ0oR_W3FFPSyTL0sUx-XmR3P7zZ65A_buwMszmMc6FqLJiNr8vqfgPZz30_4c8rksz25TVOItyinQoBQWX6xl70J2mxil_Tl16U3oKCEzJP9DRf9xsE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201336443</pqid></control><display><type>article</type><title>network of rice genes associated with stress response and seed development</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cooper, B ; Clarke, J.D ; Budworth, P ; Kreps, J ; Hutchison, D ; Park, S ; Guimil, S ; Dunn, M ; Luginbuhl, P ; Ellero, C</creator><creatorcontrib>Cooper, B ; Clarke, J.D ; Budworth, P ; Kreps, J ; Hutchison, D ; Park, S ; Guimil, S ; Dunn, M ; Luginbuhl, P ; Ellero, C</creatorcontrib><description>We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0737574100</identifier><identifier>PMID: 12684538</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>14-3-3 Proteins ; Amino acids ; Arabidopsis - genetics ; Arabidopsis thaliana ; Biological Sciences ; Biology ; Blasts ; cold stress ; Disease resistance ; DNA, Plant - genetics ; fungal diseases of plants ; Gene Expression ; Gene expression regulation ; gene induction ; Genes ; Genes, Plant ; Genetics ; infection ; Magnaporthe grisea ; Molecular Sequence Data ; nucleotide sequences ; Oryza - genetics ; Oryza - growth &amp; development ; Oryza - metabolism ; Oryza sativa ; osmotic pressure ; Phenotype ; Phosphoprotein Phosphatases - chemistry ; Phosphoprotein Phosphatases - genetics ; Phosphoprotein Phosphatases - metabolism ; Plant cells ; Plant Diseases - genetics ; plant hormones ; Plant Proteins - genetics ; Plant Proteins - metabolism ; plant stress ; Plants, Genetically Modified ; Protein Subunits ; Proteins ; Pseudomonas syringae pv. maculicola ; Quantitative Trait Loci ; Rice ; salinity ; salt stress ; seed development ; Seeds ; Seeds - growth &amp; development ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Two-Hybrid System Techniques ; Tyrosine 3-Monooxygenase - genetics ; Tyrosine 3-Monooxygenase - metabolism ; water stress ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-04, Vol.100 (8), p.4945-4950</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 15, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-bf1d529d0ee4fc6822313b9786bc94c4ceb37de5ff8c5baaddd187519353ff0e3</citedby><cites>FETCH-LOGICAL-c546t-bf1d529d0ee4fc6822313b9786bc94c4ceb37de5ff8c5baaddd187519353ff0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3144046$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3144046$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12684538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, B</creatorcontrib><creatorcontrib>Clarke, J.D</creatorcontrib><creatorcontrib>Budworth, P</creatorcontrib><creatorcontrib>Kreps, J</creatorcontrib><creatorcontrib>Hutchison, D</creatorcontrib><creatorcontrib>Park, S</creatorcontrib><creatorcontrib>Guimil, S</creatorcontrib><creatorcontrib>Dunn, M</creatorcontrib><creatorcontrib>Luginbuhl, P</creatorcontrib><creatorcontrib>Ellero, C</creatorcontrib><title>network of rice genes associated with stress response and seed development</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.</description><subject>14-3-3 Proteins</subject><subject>Amino acids</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Blasts</subject><subject>cold stress</subject><subject>Disease resistance</subject><subject>DNA, Plant - genetics</subject><subject>fungal diseases of plants</subject><subject>Gene Expression</subject><subject>Gene expression regulation</subject><subject>gene induction</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetics</subject><subject>infection</subject><subject>Magnaporthe grisea</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Oryza - genetics</subject><subject>Oryza - growth &amp; development</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>osmotic pressure</subject><subject>Phenotype</subject><subject>Phosphoprotein Phosphatases - chemistry</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Plant cells</subject><subject>Plant Diseases - genetics</subject><subject>plant hormones</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>plant stress</subject><subject>Plants, Genetically Modified</subject><subject>Protein Subunits</subject><subject>Proteins</subject><subject>Pseudomonas syringae pv. maculicola</subject><subject>Quantitative Trait Loci</subject><subject>Rice</subject><subject>salinity</subject><subject>salt stress</subject><subject>seed development</subject><subject>Seeds</subject><subject>Seeds - growth &amp; development</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Two-Hybrid System Techniques</subject><subject>Tyrosine 3-Monooxygenase - genetics</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>water stress</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EosPAmg2CiAWs0l4_kyxYoIqnKrGAri3Hvp5myMTBTlr49ziaUaewgI1t6Xzn-D4IeUrhlELFz8bBpNP8qGQlKMA9sqLQ0FKJBu6TFQCrylowcUIepbQFgEbW8JCcUKZqIXm9Ip8HnG5C_F4EX8TOYrHBAVNhUgq2MxO64qabroo0RUypyMcYhoSFGVyRMKsOr7EP4w6H6TF54E2f8MnhXpPL9---nX8sL758-HT-9qK0UqipbD11kjUOEIW3qmaMU942Va1a2wgrLLa8cii9r61sjXHO0bqStOGSew_I1-TNPnec2x06m7-Optdj7HYm_tLBdPpPZeiu9CZcayq5UpD9rw7-GH7MmCa965LFvjcDhjnpijPgquL_BXNZTCq2JL78C9yGOQ55CJoB5VwJsaSd7SEbQ0oR_W3FFPSyTL0sUx-XmR3P7zZ65A_buwMszmMc6FqLJiNr8vqfgPZz30_4c8rksz25TVOItyinQoBQWX6xl70J2mxil_Tl16U3oKCEzJP9DRf9xsE</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Cooper, B</creator><creator>Clarke, J.D</creator><creator>Budworth, P</creator><creator>Kreps, J</creator><creator>Hutchison, D</creator><creator>Park, S</creator><creator>Guimil, S</creator><creator>Dunn, M</creator><creator>Luginbuhl, P</creator><creator>Ellero, C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030415</creationdate><title>network of rice genes associated with stress response and seed development</title><author>Cooper, B ; Clarke, J.D ; Budworth, P ; Kreps, J ; Hutchison, D ; Park, S ; Guimil, S ; Dunn, M ; Luginbuhl, P ; Ellero, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-bf1d529d0ee4fc6822313b9786bc94c4ceb37de5ff8c5baaddd187519353ff0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>14-3-3 Proteins</topic><topic>Amino acids</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Blasts</topic><topic>cold stress</topic><topic>Disease resistance</topic><topic>DNA, Plant - genetics</topic><topic>fungal diseases of plants</topic><topic>Gene Expression</topic><topic>Gene expression regulation</topic><topic>gene induction</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetics</topic><topic>infection</topic><topic>Magnaporthe grisea</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Oryza - genetics</topic><topic>Oryza - growth &amp; development</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>osmotic pressure</topic><topic>Phenotype</topic><topic>Phosphoprotein Phosphatases - chemistry</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Plant cells</topic><topic>Plant Diseases - genetics</topic><topic>plant hormones</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>plant stress</topic><topic>Plants, Genetically Modified</topic><topic>Protein Subunits</topic><topic>Proteins</topic><topic>Pseudomonas syringae pv. maculicola</topic><topic>Quantitative Trait Loci</topic><topic>Rice</topic><topic>salinity</topic><topic>salt stress</topic><topic>seed development</topic><topic>Seeds</topic><topic>Seeds - growth &amp; development</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Two-Hybrid System Techniques</topic><topic>Tyrosine 3-Monooxygenase - genetics</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>water stress</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, B</creatorcontrib><creatorcontrib>Clarke, J.D</creatorcontrib><creatorcontrib>Budworth, P</creatorcontrib><creatorcontrib>Kreps, J</creatorcontrib><creatorcontrib>Hutchison, D</creatorcontrib><creatorcontrib>Park, S</creatorcontrib><creatorcontrib>Guimil, S</creatorcontrib><creatorcontrib>Dunn, M</creatorcontrib><creatorcontrib>Luginbuhl, P</creatorcontrib><creatorcontrib>Ellero, C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, B</au><au>Clarke, J.D</au><au>Budworth, P</au><au>Kreps, J</au><au>Hutchison, D</au><au>Park, S</au><au>Guimil, S</au><au>Dunn, M</au><au>Luginbuhl, P</au><au>Ellero, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>network of rice genes associated with stress response and seed development</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-04-15</date><risdate>2003</risdate><volume>100</volume><issue>8</issue><spage>4945</spage><epage>4950</epage><pages>4945-4950</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12684538</pmid><doi>10.1073/pnas.0737574100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-04, Vol.100 (8), p.4945-4950
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_153660
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 14-3-3 Proteins
Amino acids
Arabidopsis - genetics
Arabidopsis thaliana
Biological Sciences
Biology
Blasts
cold stress
Disease resistance
DNA, Plant - genetics
fungal diseases of plants
Gene Expression
Gene expression regulation
gene induction
Genes
Genes, Plant
Genetics
infection
Magnaporthe grisea
Molecular Sequence Data
nucleotide sequences
Oryza - genetics
Oryza - growth & development
Oryza - metabolism
Oryza sativa
osmotic pressure
Phenotype
Phosphoprotein Phosphatases - chemistry
Phosphoprotein Phosphatases - genetics
Phosphoprotein Phosphatases - metabolism
Plant cells
Plant Diseases - genetics
plant hormones
Plant Proteins - genetics
Plant Proteins - metabolism
plant stress
Plants, Genetically Modified
Protein Subunits
Proteins
Pseudomonas syringae pv. maculicola
Quantitative Trait Loci
Rice
salinity
salt stress
seed development
Seeds
Seeds - growth & development
Transcription Factors - genetics
Transcription Factors - metabolism
Two-Hybrid System Techniques
Tyrosine 3-Monooxygenase - genetics
Tyrosine 3-Monooxygenase - metabolism
water stress
Yeasts
title network of rice genes associated with stress response and seed development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=network%20of%20rice%20genes%20associated%20with%20stress%20response%20and%20seed%20development&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cooper,%20B&rft.date=2003-04-15&rft.volume=100&rft.issue=8&rft.spage=4945&rft.epage=4950&rft.pages=4945-4950&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0737574100&rft_dat=%3Cjstor_pubme%3E3144046%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201336443&rft_id=info:pmid/12684538&rft_jstor_id=3144046&rfr_iscdi=true