Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line
The majority of DNA damage‐induced mutagenesis in the yeast Saccharomyces cerevisiae arises as a result of translesion replication. This process is critically dependent on the deoxycytidyl transferase Rev1p, which forms a complex with the subunits of DNA polymerase ζ, Rev3p and Rev7p. To examine the...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2003-04, Vol.22 (7), p.1654-1664 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1664 |
---|---|
container_issue | 7 |
container_start_page | 1654 |
container_title | The EMBO journal |
container_volume | 22 |
creator | Simpson, Laura J. Sale, Julian E. |
description | The majority of DNA damage‐induced mutagenesis in the yeast
Saccharomyces cerevisiae
arises as a result of translesion replication. This process is critically dependent on the deoxycytidyl transferase Rev1p, which forms a complex with the subunits of DNA polymerase ζ, Rev3p and Rev7p. To examine the role of Rev1 in vertebrate mutagenesis and the DNA damage response, we disrupted the gene in DT40 cells. Rev1‐deficient DT40 grow slowly and are sensitive to a wide range of DNA‐damaging agents. Homologous recombination repair is likely to be intact as basal and damage induced sister chromatid exchange and immunoglobulin gene conversion are unaffected. How ever, the mutant cells show a markedly reduced level of non‐templated immunoglobulin gene mutation, indicating a defect in translesion bypass. Furthermore, ultraviolet exposure results in marked chromosome breakage, suggesting that replication gaps created in the absence of Rev1 cannot be efficiently repaired by recombination. Thus, Rev1‐dependent translesion bypass and mutagenesis is likely to be a trade‐off for the ability to complete replication of a damaged template and thereby maintain genome integrity. |
doi_str_mv | 10.1093/emboj/cdg161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_152905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>348181351</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3351-6c734127fe805a87ae58f686e99d7aae40204ba21e86ead4ec35a53cad53e1153</originalsourceid><addsrcrecordid>eNptkc9u1DAQhy0EotvCjTOyOHAL9cRx_hw4lFJoUQEJwdmaJLPBK8fe2smi3voIPGOfpN5ugYI4WZr5vvGMfow9A_EKRCMPaWz96rDrByjhAVtAUYosF5V6yBYiLyEroG722H6MKyGEqit4zPYgL0sBFSzY_IU2wE3kFCO5yaDlSx_4209HvMcRB-KTtxTQdcTR9dx5d331c6JxbXGinptxnJ0frG9naxwfyBEf5wkn4x1PBeQbChO1IdG8I2t5wugJe7REG-np3XvAvr07-Xp8mp1_fn92fHSeraVUkJVdJQvIqyXVQmFdIal6WdYlNU1fIVIhclG0mAOlGvYFdVKhkh32ShKAkgfs9W7uem5H6rt0YUCr18GMGC61R6P_7jjzXQ9-o0Hljdj6L-_84C9mipMeTdxegY78HDXUlYQylwl88Q-48nNw6TYNjcpVI6FJ0PP72_xe41caCVA74IexdPmnL_Q2aX2btN4lrU8-vvlQqUaJWy_beTEpbqBw7_f_uPIGVmGwaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259319</pqid></control><display><type>article</type><title>Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Simpson, Laura J. ; Sale, Julian E.</creator><creatorcontrib>Simpson, Laura J. ; Sale, Julian E.</creatorcontrib><description>The majority of DNA damage‐induced mutagenesis in the yeast
Saccharomyces cerevisiae
arises as a result of translesion replication. This process is critically dependent on the deoxycytidyl transferase Rev1p, which forms a complex with the subunits of DNA polymerase ζ, Rev3p and Rev7p. To examine the role of Rev1 in vertebrate mutagenesis and the DNA damage response, we disrupted the gene in DT40 cells. Rev1‐deficient DT40 grow slowly and are sensitive to a wide range of DNA‐damaging agents. Homologous recombination repair is likely to be intact as basal and damage induced sister chromatid exchange and immunoglobulin gene conversion are unaffected. How ever, the mutant cells show a markedly reduced level of non‐templated immunoglobulin gene mutation, indicating a defect in translesion bypass. Furthermore, ultraviolet exposure results in marked chromosome breakage, suggesting that replication gaps created in the absence of Rev1 cannot be efficiently repaired by recombination. Thus, Rev1‐dependent translesion bypass and mutagenesis is likely to be a trade‐off for the ability to complete replication of a damaged template and thereby maintain genome integrity.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/cdg161</identifier><identifier>PMID: 12660171</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Apoptosis - physiology ; Base Sequence ; Cell Line ; chromosome instability ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA Primers ; EMBO13 ; Gene Conversion ; Genes, Immunoglobulin ; immunoglobulin diversification ; mutagenesis ; Mutagens - pharmacology ; Mutation ; Nucleotidyltransferases - genetics ; Nucleotidyltransferases - physiology ; Rev1 ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - physiology ; Sister Chromatid Exchange ; translesion synthesis ; Ultraviolet Rays ; Vertebrates ; Yeasts</subject><ispartof>The EMBO journal, 2003-04, Vol.22 (7), p.1654-1664</ispartof><rights>European Molecular Biology Organization 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Apr 01, 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC152905/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC152905/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12660171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simpson, Laura J.</creatorcontrib><creatorcontrib>Sale, Julian E.</creatorcontrib><title>Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The majority of DNA damage‐induced mutagenesis in the yeast
Saccharomyces cerevisiae
arises as a result of translesion replication. This process is critically dependent on the deoxycytidyl transferase Rev1p, which forms a complex with the subunits of DNA polymerase ζ, Rev3p and Rev7p. To examine the role of Rev1 in vertebrate mutagenesis and the DNA damage response, we disrupted the gene in DT40 cells. Rev1‐deficient DT40 grow slowly and are sensitive to a wide range of DNA‐damaging agents. Homologous recombination repair is likely to be intact as basal and damage induced sister chromatid exchange and immunoglobulin gene conversion are unaffected. How ever, the mutant cells show a markedly reduced level of non‐templated immunoglobulin gene mutation, indicating a defect in translesion bypass. Furthermore, ultraviolet exposure results in marked chromosome breakage, suggesting that replication gaps created in the absence of Rev1 cannot be efficiently repaired by recombination. Thus, Rev1‐dependent translesion bypass and mutagenesis is likely to be a trade‐off for the ability to complete replication of a damaged template and thereby maintain genome integrity.</description><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>Base Sequence</subject><subject>Cell Line</subject><subject>chromosome instability</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Primers</subject><subject>EMBO13</subject><subject>Gene Conversion</subject><subject>Genes, Immunoglobulin</subject><subject>immunoglobulin diversification</subject><subject>mutagenesis</subject><subject>Mutagens - pharmacology</subject><subject>Mutation</subject><subject>Nucleotidyltransferases - genetics</subject><subject>Nucleotidyltransferases - physiology</subject><subject>Rev1</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Sister Chromatid Exchange</subject><subject>translesion synthesis</subject><subject>Ultraviolet Rays</subject><subject>Vertebrates</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkc9u1DAQhy0EotvCjTOyOHAL9cRx_hw4lFJoUQEJwdmaJLPBK8fe2smi3voIPGOfpN5ugYI4WZr5vvGMfow9A_EKRCMPaWz96rDrByjhAVtAUYosF5V6yBYiLyEroG722H6MKyGEqit4zPYgL0sBFSzY_IU2wE3kFCO5yaDlSx_4209HvMcRB-KTtxTQdcTR9dx5d331c6JxbXGinptxnJ0frG9naxwfyBEf5wkn4x1PBeQbChO1IdG8I2t5wugJe7REG-np3XvAvr07-Xp8mp1_fn92fHSeraVUkJVdJQvIqyXVQmFdIal6WdYlNU1fIVIhclG0mAOlGvYFdVKhkh32ShKAkgfs9W7uem5H6rt0YUCr18GMGC61R6P_7jjzXQ9-o0Hljdj6L-_84C9mipMeTdxegY78HDXUlYQylwl88Q-48nNw6TYNjcpVI6FJ0PP72_xe41caCVA74IexdPmnL_Q2aX2btN4lrU8-vvlQqUaJWy_beTEpbqBw7_f_uPIGVmGwaA</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Simpson, Laura J.</creator><creator>Sale, Julian E.</creator><general>Nature Publishing Group UK</general><general>John Wiley & Sons, Ltd</general><general>Springer Nature B.V</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20030401</creationdate><title>Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line</title><author>Simpson, Laura J. ; Sale, Julian E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3351-6c734127fe805a87ae58f686e99d7aae40204ba21e86ead4ec35a53cad53e1153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>Base Sequence</topic><topic>Cell Line</topic><topic>chromosome instability</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Primers</topic><topic>EMBO13</topic><topic>Gene Conversion</topic><topic>Genes, Immunoglobulin</topic><topic>immunoglobulin diversification</topic><topic>mutagenesis</topic><topic>Mutagens - pharmacology</topic><topic>Mutation</topic><topic>Nucleotidyltransferases - genetics</topic><topic>Nucleotidyltransferases - physiology</topic><topic>Rev1</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Sister Chromatid Exchange</topic><topic>translesion synthesis</topic><topic>Ultraviolet Rays</topic><topic>Vertebrates</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simpson, Laura J.</creatorcontrib><creatorcontrib>Sale, Julian E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simpson, Laura J.</au><au>Sale, Julian E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>22</volume><issue>7</issue><spage>1654</spage><epage>1664</epage><pages>1654-1664</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The majority of DNA damage‐induced mutagenesis in the yeast
Saccharomyces cerevisiae
arises as a result of translesion replication. This process is critically dependent on the deoxycytidyl transferase Rev1p, which forms a complex with the subunits of DNA polymerase ζ, Rev3p and Rev7p. To examine the role of Rev1 in vertebrate mutagenesis and the DNA damage response, we disrupted the gene in DT40 cells. Rev1‐deficient DT40 grow slowly and are sensitive to a wide range of DNA‐damaging agents. Homologous recombination repair is likely to be intact as basal and damage induced sister chromatid exchange and immunoglobulin gene conversion are unaffected. How ever, the mutant cells show a markedly reduced level of non‐templated immunoglobulin gene mutation, indicating a defect in translesion bypass. Furthermore, ultraviolet exposure results in marked chromosome breakage, suggesting that replication gaps created in the absence of Rev1 cannot be efficiently repaired by recombination. Thus, Rev1‐dependent translesion bypass and mutagenesis is likely to be a trade‐off for the ability to complete replication of a damaged template and thereby maintain genome integrity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12660171</pmid><doi>10.1093/emboj/cdg161</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2003-04, Vol.22 (7), p.1654-1664 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_152905 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Apoptosis - physiology Base Sequence Cell Line chromosome instability Deoxyribonucleic acid DNA DNA Damage DNA Primers EMBO13 Gene Conversion Genes, Immunoglobulin immunoglobulin diversification mutagenesis Mutagens - pharmacology Mutation Nucleotidyltransferases - genetics Nucleotidyltransferases - physiology Rev1 Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - physiology Sister Chromatid Exchange translesion synthesis Ultraviolet Rays Vertebrates Yeasts |
title | Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rev1%20is%20essential%20for%20DNA%20damage%20tolerance%20and%20non%E2%80%90templated%20immunoglobulin%20gene%20mutation%20in%20a%20vertebrate%20cell%20line&rft.jtitle=The%20EMBO%20journal&rft.au=Simpson,%20Laura%20J.&rft.date=2003-04-01&rft.volume=22&rft.issue=7&rft.spage=1654&rft.epage=1664&rft.pages=1654-1664&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/cdg161&rft_dat=%3Cproquest_pubme%3E348181351%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259319&rft_id=info:pmid/12660171&rfr_iscdi=true |