The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity

Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2002-11, Vol.14 (11), p.2929-2939
Hauptverfasser: Wladimir I. L. Tameling, Sandra D. J. Elzinga, Darmin, Patricia S., Vossen, Jack H., Frank L. W. Takken, Haring, Michel A., Ben J. C. Cornelissen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2939
container_issue 11
container_start_page 2929
container_title The Plant cell
container_volume 14
creator Wladimir I. L. Tameling
Sandra D. J. Elzinga
Darmin, Patricia S.
Vossen, Jack H.
Frank L. W. Takken
Haring, Michel A.
Ben J. C. Cornelissen
description Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show that the NBS of R proteins forms a functional nucleotide binding pocket. The N-terminal halves of two tomato R proteins, I-2 conferring resistance to Fusarium oxysporum and Mi-1 conferring resistance to root-knot nematodes and potato aphids, were produced as glutathione S-transferase fusions in Escherichia coli. In a filter binding assay, purified I-2 was found to bind ATP rather than other nucleoside triphosphates. ATP binding appeared to be fully dependent on the presence of a divalent cation. A mutant I-2 protein containing a mutation in the P-loop showed a strongly reduced ATP binding capacity. Thin layer chromatography revealed that both I-2 and Mi-1 exerted ATPase activity. Based on the strong conservation of NBS domains in R proteins of the NBS-LRR class, we propose that they all are capable of binding and hydrolyzing ATP.
doi_str_mv 10.1105/tpc.005793
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_152737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3871656</jstor_id><sourcerecordid>3871656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-47e7fd4c5f292a6aa07a565a387a3f21d5f8402c5804911cf78e33d90d9b79bc3</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIREvLhTNCFgcOSNt6_Lk-cAgVLZWKWlVB4mYcr7dxtLGD7S3qf4-jROXjwmlGer83mpnXNK8AnwBgflo29gRjLhV90hwCp6Qlqvv2tPaY4ZYJDgfNi5xXGGOQoJ43B0AYSAlw2HyfLx2ax7UpEd2iCxccukmxn2zJ6LIlyIQeffEtoFly6HwKtvgYzIhm8xv00Yfeh7utoTgfMvrpy3KrmOzQrJL3vjwcN88GM2b3cl-Pmq_nn-Znn9ur64vLs9lVa1knSsukk0PPLB-IIkYYg6XhghvaSUMHAj0fOoaJ5R1mCsAOsnOU9gr3aiHVwtKj5sNu7mZarF1vXSjJjHqT_NqkBx2N138rwS_1XbzXwImksvrf7f0p_phcLnrts3XjaIKLU9aSCI45Vv8FoROCcoYr-PYfcBWnVJ-XNYFOCq4oq9D7HWRTzDm54XFjwHqbrq7p6l26FX7z542_0X2cFXi9A1a5xPSo1yeC4IL-Alosp5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218765934</pqid></control><display><type>article</type><title>The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wladimir I. L. Tameling ; Sandra D. J. Elzinga ; Darmin, Patricia S. ; Vossen, Jack H. ; Frank L. W. Takken ; Haring, Michel A. ; Ben J. C. Cornelissen</creator><creatorcontrib>Wladimir I. L. Tameling ; Sandra D. J. Elzinga ; Darmin, Patricia S. ; Vossen, Jack H. ; Frank L. W. Takken ; Haring, Michel A. ; Ben J. C. Cornelissen</creatorcontrib><description>Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show that the NBS of R proteins forms a functional nucleotide binding pocket. The N-terminal halves of two tomato R proteins, I-2 conferring resistance to Fusarium oxysporum and Mi-1 conferring resistance to root-knot nematodes and potato aphids, were produced as glutathione S-transferase fusions in Escherichia coli. In a filter binding assay, purified I-2 was found to bind ATP rather than other nucleoside triphosphates. ATP binding appeared to be fully dependent on the presence of a divalent cation. A mutant I-2 protein containing a mutation in the P-loop showed a strongly reduced ATP binding capacity. Thin layer chromatography revealed that both I-2 and Mi-1 exerted ATPase activity. Based on the strong conservation of NBS domains in R proteins of the NBS-LRR class, we propose that they all are capable of binding and hydrolyzing ATP.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.005793</identifier><identifier>PMID: 12417711</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Adenosine triphosphatases ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Antibodies ; ATP ; Carrier proteins ; Cytochromes ; Disease resistance ; Divalent cations ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; E coli ; Escherichia coli - genetics ; Hydrolysis ; Lycopersicon esculentum - enzymology ; Lycopersicon esculentum - genetics ; Molecular Sequence Data ; Nucleotides ; Plant cells ; Plant diseases ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Proteins ; Proteins - metabolism ; Radioactive decay ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Substrate Specificity ; Thin layer chromatography ; Tomatoes</subject><ispartof>The Plant cell, 2002-11, Vol.14 (11), p.2929-2939</ispartof><rights>Copyright 2002 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Physiologists Nov 2002</rights><rights>Copyright © 2002, American Society of Plant Biologists 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-47e7fd4c5f292a6aa07a565a387a3f21d5f8402c5804911cf78e33d90d9b79bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3871656$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3871656$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,27928,27929,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12417711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wladimir I. L. Tameling</creatorcontrib><creatorcontrib>Sandra D. J. Elzinga</creatorcontrib><creatorcontrib>Darmin, Patricia S.</creatorcontrib><creatorcontrib>Vossen, Jack H.</creatorcontrib><creatorcontrib>Frank L. W. Takken</creatorcontrib><creatorcontrib>Haring, Michel A.</creatorcontrib><creatorcontrib>Ben J. C. Cornelissen</creatorcontrib><title>The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show that the NBS of R proteins forms a functional nucleotide binding pocket. The N-terminal halves of two tomato R proteins, I-2 conferring resistance to Fusarium oxysporum and Mi-1 conferring resistance to root-knot nematodes and potato aphids, were produced as glutathione S-transferase fusions in Escherichia coli. In a filter binding assay, purified I-2 was found to bind ATP rather than other nucleoside triphosphates. ATP binding appeared to be fully dependent on the presence of a divalent cation. A mutant I-2 protein containing a mutation in the P-loop showed a strongly reduced ATP binding capacity. Thin layer chromatography revealed that both I-2 and Mi-1 exerted ATPase activity. Based on the strong conservation of NBS domains in R proteins of the NBS-LRR class, we propose that they all are capable of binding and hydrolyzing ATP.</description><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Antibodies</subject><subject>ATP</subject><subject>Carrier proteins</subject><subject>Cytochromes</subject><subject>Disease resistance</subject><subject>Divalent cations</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Hydrolysis</subject><subject>Lycopersicon esculentum - enzymology</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Molecular Sequence Data</subject><subject>Nucleotides</subject><subject>Plant cells</subject><subject>Plant diseases</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Radioactive decay</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Thin layer chromatography</subject><subject>Tomatoes</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1vEzEQxVcIREvLhTNCFgcOSNt6_Lk-cAgVLZWKWlVB4mYcr7dxtLGD7S3qf4-jROXjwmlGer83mpnXNK8AnwBgflo29gRjLhV90hwCp6Qlqvv2tPaY4ZYJDgfNi5xXGGOQoJ43B0AYSAlw2HyfLx2ax7UpEd2iCxccukmxn2zJ6LIlyIQeffEtoFly6HwKtvgYzIhm8xv00Yfeh7utoTgfMvrpy3KrmOzQrJL3vjwcN88GM2b3cl-Pmq_nn-Znn9ur64vLs9lVa1knSsukk0PPLB-IIkYYg6XhghvaSUMHAj0fOoaJ5R1mCsAOsnOU9gr3aiHVwtKj5sNu7mZarF1vXSjJjHqT_NqkBx2N138rwS_1XbzXwImksvrf7f0p_phcLnrts3XjaIKLU9aSCI45Vv8FoROCcoYr-PYfcBWnVJ-XNYFOCq4oq9D7HWRTzDm54XFjwHqbrq7p6l26FX7z542_0X2cFXi9A1a5xPSo1yeC4IL-Alosp5U</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Wladimir I. L. Tameling</creator><creator>Sandra D. J. Elzinga</creator><creator>Darmin, Patricia S.</creator><creator>Vossen, Jack H.</creator><creator>Frank L. W. Takken</creator><creator>Haring, Michel A.</creator><creator>Ben J. C. Cornelissen</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021101</creationdate><title>The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity</title><author>Wladimir I. L. Tameling ; Sandra D. J. Elzinga ; Darmin, Patricia S. ; Vossen, Jack H. ; Frank L. W. Takken ; Haring, Michel A. ; Ben J. C. Cornelissen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-47e7fd4c5f292a6aa07a565a387a3f21d5f8402c5804911cf78e33d90d9b79bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Antibodies</topic><topic>ATP</topic><topic>Carrier proteins</topic><topic>Cytochromes</topic><topic>Disease resistance</topic><topic>Divalent cations</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Hydrolysis</topic><topic>Lycopersicon esculentum - enzymology</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Molecular Sequence Data</topic><topic>Nucleotides</topic><topic>Plant cells</topic><topic>Plant diseases</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Radioactive decay</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Thin layer chromatography</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wladimir I. L. Tameling</creatorcontrib><creatorcontrib>Sandra D. J. Elzinga</creatorcontrib><creatorcontrib>Darmin, Patricia S.</creatorcontrib><creatorcontrib>Vossen, Jack H.</creatorcontrib><creatorcontrib>Frank L. W. Takken</creatorcontrib><creatorcontrib>Haring, Michel A.</creatorcontrib><creatorcontrib>Ben J. C. Cornelissen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wladimir I. L. Tameling</au><au>Sandra D. J. Elzinga</au><au>Darmin, Patricia S.</au><au>Vossen, Jack H.</au><au>Frank L. W. Takken</au><au>Haring, Michel A.</au><au>Ben J. C. Cornelissen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2002-11-01</date><risdate>2002</risdate><volume>14</volume><issue>11</issue><spage>2929</spage><epage>2939</epage><pages>2929-2939</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show that the NBS of R proteins forms a functional nucleotide binding pocket. The N-terminal halves of two tomato R proteins, I-2 conferring resistance to Fusarium oxysporum and Mi-1 conferring resistance to root-knot nematodes and potato aphids, were produced as glutathione S-transferase fusions in Escherichia coli. In a filter binding assay, purified I-2 was found to bind ATP rather than other nucleoside triphosphates. ATP binding appeared to be fully dependent on the presence of a divalent cation. A mutant I-2 protein containing a mutation in the P-loop showed a strongly reduced ATP binding capacity. Thin layer chromatography revealed that both I-2 and Mi-1 exerted ATPase activity. Based on the strong conservation of NBS domains in R proteins of the NBS-LRR class, we propose that they all are capable of binding and hydrolyzing ATP.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>12417711</pmid><doi>10.1105/tpc.005793</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2002-11, Vol.14 (11), p.2929-2939
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_152737
source MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Adenosine triphosphatases
Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
Amino Acid Sequence
Antibodies
ATP
Carrier proteins
Cytochromes
Disease resistance
Divalent cations
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
E coli
Escherichia coli - genetics
Hydrolysis
Lycopersicon esculentum - enzymology
Lycopersicon esculentum - genetics
Molecular Sequence Data
Nucleotides
Plant cells
Plant diseases
Plant Proteins - genetics
Plant Proteins - metabolism
Proteins
Proteins - metabolism
Radioactive decay
Recombinant Proteins - metabolism
Sequence Homology, Amino Acid
Substrate Specificity
Thin layer chromatography
Tomatoes
title The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Tomato%20R%20Gene%20Products%20I-2%20and%20Mi-1%20Are%20Functional%20ATP%20Binding%20Proteins%20with%20ATPase%20Activity&rft.jtitle=The%20Plant%20cell&rft.au=Wladimir%20I.%20L.%20Tameling&rft.date=2002-11-01&rft.volume=14&rft.issue=11&rft.spage=2929&rft.epage=2939&rft.pages=2929-2939&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.005793&rft_dat=%3Cjstor_pubme%3E3871656%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218765934&rft_id=info:pmid/12417711&rft_jstor_id=3871656&rfr_iscdi=true