Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data

Tuberculosis can be studied at the population level by genotyping strains of Mycobacterium tuberculosis isolated from patients. We use an approximate Bayesian computational method in combination with a stochastic model of tuberculosis transmission and mutation of a molecular marker to estimate the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2006-07, Vol.173 (3), p.1511-1520
Hauptverfasser: Tanaka, Mark M, Francis, Andrew R, Luciani, Fabio, Sisson, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1520
container_issue 3
container_start_page 1511
container_title Genetics (Austin)
container_volume 173
creator Tanaka, Mark M
Francis, Andrew R
Luciani, Fabio
Sisson, S A
description Tuberculosis can be studied at the population level by genotyping strains of Mycobacterium tuberculosis isolated from patients. We use an approximate Bayesian computational method in combination with a stochastic model of tuberculosis transmission and mutation of a molecular marker to estimate the net transmission rate, the doubling time, and the reproductive value of the pathogen. This method is applied to a published data set from San Francisco of tuberculosis genotypes based on the marker IS6110. The mutation rate of this marker has previously been studied, and we use those estimates to form a prior distribution of mutation rates in the inference procedure. The posterior point estimates of the key parameters of interest for these data are as follows: net transmission rate, 0.69/year [95% credibility interval (C.I.) 0.38, 1.08]; doubling time, 1.08 years (95% C.I. 0.64, 1.82); and reproductive value 3.4 (95% C.I. 1.4, 79.7). These figures suggest a rapidly spreading epidemic, consistent with observations of the resurgence of tuberculosis in the United States in the 1980s and 1990s.
doi_str_mv 10.1534/genetics.106.055574
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1526704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68677512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-9dcd4ce0d3a79bd06713e1631b07f08826b7db2fc1368b85c9bb34436521391c3</originalsourceid><addsrcrecordid>eNqNkkuLFDEUhYMoTjv6CwQpXLirnty8sxF08DEw4MZZhySVaqupqpRJarD_vRm6fW5mVoGb7x7OuRyEXgLeAqfsYhfmUAaft4DFFnPOJXuENqAZbYmg8BhtMAbRCknhDD3LeY8xFpqrp-gMhCBMY7VB-5s8zLvGLkuKP4bJltC8t4eQBzs3Pk7LWmwZ4tyU2IRcjkBZXUh-HWMeclOSnfM05HxHLTbZKZSQctOnODXVYiyHJTSdLfY5etLbMYcXp_cc3Xz88PXyc3v95dPV5bvr1jNNSqs73zEfcEet1K7DQgINUAM5LHusFBFOdo70HqhQTnGvnaOMUcEJUA2enqO3R91ldVPofJirx9EsqbpPBxPtYP79mYdvZhdvDXAiJGZV4M1JIMXva41taj4fxtHOIa7ZCCWk5EDuBUFrpUHRB4BcY651BV__B-7jmuZ6LkOAASNCyQrRI-RTzDmF_nc2wOauGuZXNepAmGM16tarv8_yZ-fUBfoTowa6JQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214142687</pqid></control><display><type>article</type><title>Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tanaka, Mark M ; Francis, Andrew R ; Luciani, Fabio ; Sisson, S A</creator><creatorcontrib>Tanaka, Mark M ; Francis, Andrew R ; Luciani, Fabio ; Sisson, S A</creatorcontrib><description>Tuberculosis can be studied at the population level by genotyping strains of Mycobacterium tuberculosis isolated from patients. We use an approximate Bayesian computational method in combination with a stochastic model of tuberculosis transmission and mutation of a molecular marker to estimate the net transmission rate, the doubling time, and the reproductive value of the pathogen. This method is applied to a published data set from San Francisco of tuberculosis genotypes based on the marker IS6110. The mutation rate of this marker has previously been studied, and we use those estimates to form a prior distribution of mutation rates in the inference procedure. The posterior point estimates of the key parameters of interest for these data are as follows: net transmission rate, 0.69/year [95% credibility interval (C.I.) 0.38, 1.08]; doubling time, 1.08 years (95% C.I. 0.64, 1.82); and reproductive value 3.4 (95% C.I. 1.4, 79.7). These figures suggest a rapidly spreading epidemic, consistent with observations of the resurgence of tuberculosis in the United States in the 1980s and 1990s.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.106.055574</identifier><identifier>PMID: 16624908</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Algorithms ; Bayes Theorem ; Bayesian analysis ; Computational Biology - methods ; Disease transmission ; DNA fingerprints ; Genetic Markers ; Genotype ; Genotype &amp; phenotype ; Humans ; Investigations ; Methods ; Mutation ; Mycobacterium tuberculosis ; Risk Factors ; San Francisco - epidemiology ; Studies ; Tuberculosis ; Tuberculosis - epidemiology ; Tuberculosis - genetics ; Tuberculosis - transmission</subject><ispartof>Genetics (Austin), 2006-07, Vol.173 (3), p.1511-1520</ispartof><rights>Copyright Genetics Society of America Jul 2006</rights><rights>Copyright © 2006 by the Genetics Society of America 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-9dcd4ce0d3a79bd06713e1631b07f08826b7db2fc1368b85c9bb34436521391c3</citedby><cites>FETCH-LOGICAL-c492t-9dcd4ce0d3a79bd06713e1631b07f08826b7db2fc1368b85c9bb34436521391c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16624908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanaka, Mark M</creatorcontrib><creatorcontrib>Francis, Andrew R</creatorcontrib><creatorcontrib>Luciani, Fabio</creatorcontrib><creatorcontrib>Sisson, S A</creatorcontrib><title>Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Tuberculosis can be studied at the population level by genotyping strains of Mycobacterium tuberculosis isolated from patients. We use an approximate Bayesian computational method in combination with a stochastic model of tuberculosis transmission and mutation of a molecular marker to estimate the net transmission rate, the doubling time, and the reproductive value of the pathogen. This method is applied to a published data set from San Francisco of tuberculosis genotypes based on the marker IS6110. The mutation rate of this marker has previously been studied, and we use those estimates to form a prior distribution of mutation rates in the inference procedure. The posterior point estimates of the key parameters of interest for these data are as follows: net transmission rate, 0.69/year [95% credibility interval (C.I.) 0.38, 1.08]; doubling time, 1.08 years (95% C.I. 0.64, 1.82); and reproductive value 3.4 (95% C.I. 1.4, 79.7). These figures suggest a rapidly spreading epidemic, consistent with observations of the resurgence of tuberculosis in the United States in the 1980s and 1990s.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Computational Biology - methods</subject><subject>Disease transmission</subject><subject>DNA fingerprints</subject><subject>Genetic Markers</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Investigations</subject><subject>Methods</subject><subject>Mutation</subject><subject>Mycobacterium tuberculosis</subject><subject>Risk Factors</subject><subject>San Francisco - epidemiology</subject><subject>Studies</subject><subject>Tuberculosis</subject><subject>Tuberculosis - epidemiology</subject><subject>Tuberculosis - genetics</subject><subject>Tuberculosis - transmission</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkkuLFDEUhYMoTjv6CwQpXLirnty8sxF08DEw4MZZhySVaqupqpRJarD_vRm6fW5mVoGb7x7OuRyEXgLeAqfsYhfmUAaft4DFFnPOJXuENqAZbYmg8BhtMAbRCknhDD3LeY8xFpqrp-gMhCBMY7VB-5s8zLvGLkuKP4bJltC8t4eQBzs3Pk7LWmwZ4tyU2IRcjkBZXUh-HWMeclOSnfM05HxHLTbZKZSQctOnODXVYiyHJTSdLfY5etLbMYcXp_cc3Xz88PXyc3v95dPV5bvr1jNNSqs73zEfcEet1K7DQgINUAM5LHusFBFOdo70HqhQTnGvnaOMUcEJUA2enqO3R91ldVPofJirx9EsqbpPBxPtYP79mYdvZhdvDXAiJGZV4M1JIMXva41taj4fxtHOIa7ZCCWk5EDuBUFrpUHRB4BcY651BV__B-7jmuZ6LkOAASNCyQrRI-RTzDmF_nc2wOauGuZXNepAmGM16tarv8_yZ-fUBfoTowa6JQ</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Tanaka, Mark M</creator><creator>Francis, Andrew R</creator><creator>Luciani, Fabio</creator><creator>Sisson, S A</creator><general>Genetics Society of America</general><general>Copyright © 2006 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060701</creationdate><title>Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data</title><author>Tanaka, Mark M ; Francis, Andrew R ; Luciani, Fabio ; Sisson, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-9dcd4ce0d3a79bd06713e1631b07f08826b7db2fc1368b85c9bb34436521391c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Computational Biology - methods</topic><topic>Disease transmission</topic><topic>DNA fingerprints</topic><topic>Genetic Markers</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Investigations</topic><topic>Methods</topic><topic>Mutation</topic><topic>Mycobacterium tuberculosis</topic><topic>Risk Factors</topic><topic>San Francisco - epidemiology</topic><topic>Studies</topic><topic>Tuberculosis</topic><topic>Tuberculosis - epidemiology</topic><topic>Tuberculosis - genetics</topic><topic>Tuberculosis - transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Mark M</creatorcontrib><creatorcontrib>Francis, Andrew R</creatorcontrib><creatorcontrib>Luciani, Fabio</creatorcontrib><creatorcontrib>Sisson, S A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Mark M</au><au>Francis, Andrew R</au><au>Luciani, Fabio</au><au>Sisson, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>173</volume><issue>3</issue><spage>1511</spage><epage>1520</epage><pages>1511-1520</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Tuberculosis can be studied at the population level by genotyping strains of Mycobacterium tuberculosis isolated from patients. We use an approximate Bayesian computational method in combination with a stochastic model of tuberculosis transmission and mutation of a molecular marker to estimate the net transmission rate, the doubling time, and the reproductive value of the pathogen. This method is applied to a published data set from San Francisco of tuberculosis genotypes based on the marker IS6110. The mutation rate of this marker has previously been studied, and we use those estimates to form a prior distribution of mutation rates in the inference procedure. The posterior point estimates of the key parameters of interest for these data are as follows: net transmission rate, 0.69/year [95% credibility interval (C.I.) 0.38, 1.08]; doubling time, 1.08 years (95% C.I. 0.64, 1.82); and reproductive value 3.4 (95% C.I. 1.4, 79.7). These figures suggest a rapidly spreading epidemic, consistent with observations of the resurgence of tuberculosis in the United States in the 1980s and 1990s.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>16624908</pmid><doi>10.1534/genetics.106.055574</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2006-07, Vol.173 (3), p.1511-1520
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1526704
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Bayes Theorem
Bayesian analysis
Computational Biology - methods
Disease transmission
DNA fingerprints
Genetic Markers
Genotype
Genotype & phenotype
Humans
Investigations
Methods
Mutation
Mycobacterium tuberculosis
Risk Factors
San Francisco - epidemiology
Studies
Tuberculosis
Tuberculosis - epidemiology
Tuberculosis - genetics
Tuberculosis - transmission
title Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20approximate%20Bayesian%20computation%20to%20estimate%20tuberculosis%20transmission%20parameters%20from%20genotype%20data&rft.jtitle=Genetics%20(Austin)&rft.au=Tanaka,%20Mark%20M&rft.date=2006-07-01&rft.volume=173&rft.issue=3&rft.spage=1511&rft.epage=1520&rft.pages=1511-1520&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.106.055574&rft_dat=%3Cproquest_pubme%3E68677512%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214142687&rft_id=info:pmid/16624908&rfr_iscdi=true