Activator Mutagenesis of the Pink scutellum1/viviparous7 Locus of Maize
The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions ass...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2003-04, Vol.15 (4), p.874-884 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 884 |
---|---|
container_issue | 4 |
container_start_page | 874 |
container_title | The Plant cell |
container_volume | 15 |
creator | Singh, Manjit Lewis, Paul E. Hardeman, Kristine Bai, Ling Jocelyn K. C. Rose Mazourek, Michael Chomet, Paul Brutnell, Thomas P. |
description | The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions associated with Ac and its nonautonomous deletion derivative Ds. To overcome these limitations, we are developing a series of nearly isogenic maize lines, each with a single active Ac element positioned at a well-defined location. These Ac elements are distributed at 10- to 20-centimorgan intervals throughout the genome for use in regional mutagenesis. Here, we demonstrate the utility of this Ac-based gene-tagging approach through the targeted mutagenesis of the pink scutellum1/viviparous7 (ps1/vp7) locus. Using a novel PCR-based technique, the Ps1 gene was cloned and Ac elements positioned precisely in each of the seven alleles recovered. The Ps1 gene is predicted to encode lycopene β-cyclase and is necessary for the accumulation of both abscisic acid and the carotenoid zeaxanthin in mature maize embryos. This study demonstrates the utility of an Ac mutagenesis program to efficiently generate allelic diversity at closely linked loci in maize. |
doi_str_mv | 10.1105/tpc.010249 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_152336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3871895</jstor_id><sourcerecordid>3871895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-227c743058598704a18d4085eca755007ac4e538bc224e7c17d19a41f7d68bab3</originalsourceid><addsrcrecordid>eNpdkctLAzEQh4Movi-eRRYPHoTVmWyyyR48iPiCih4UvIU0TTW13dQkW9C_3miLr9ME5pthfvkI2UE4QgR-nKbmCBAoa5bIOvKKlrSRj8v5DQxKVnNcIxsxjgAABTarZA1pLRAkWyeXpya5mU4-FDdd0k-2tdHFwg-L9GyLO9e-FNF0yY7H3QSPZ27mpjr4Loqi5033Bd5o9263yMpQj6PdXtRN8nBxfn92VfZuL6_PTnulYZKlklJhBKuAS95IAUyjHDCQ3BotOAcQ2jDLK9k3lDIrDIoBNprhUAxq2df9apOczPdOu_7EDoxtU9BjNQ1uosOb8tqpv53WPasnP1PIaVXVef5gMR_8a2djUhMXTY6nW5tjKZQy_xqKDO7_A0e-C23OpihKIWugkKHDOWSCjzHY4fchCOrTjcpu1NxNhvd-n_6DLmRkYHcOjGL28d2vpEDZ8OoDtAKTHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218786020</pqid></control><display><type>article</type><title>Activator Mutagenesis of the Pink scutellum1/viviparous7 Locus of Maize</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Singh, Manjit ; Lewis, Paul E. ; Hardeman, Kristine ; Bai, Ling ; Jocelyn K. C. Rose ; Mazourek, Michael ; Chomet, Paul ; Brutnell, Thomas P.</creator><creatorcontrib>Singh, Manjit ; Lewis, Paul E. ; Hardeman, Kristine ; Bai, Ling ; Jocelyn K. C. Rose ; Mazourek, Michael ; Chomet, Paul ; Brutnell, Thomas P.</creatorcontrib><description>The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions associated with Ac and its nonautonomous deletion derivative Ds. To overcome these limitations, we are developing a series of nearly isogenic maize lines, each with a single active Ac element positioned at a well-defined location. These Ac elements are distributed at 10- to 20-centimorgan intervals throughout the genome for use in regional mutagenesis. Here, we demonstrate the utility of this Ac-based gene-tagging approach through the targeted mutagenesis of the pink scutellum1/viviparous7 (ps1/vp7) locus. Using a novel PCR-based technique, the Ps1 gene was cloned and Ac elements positioned precisely in each of the seven alleles recovered. The Ps1 gene is predicted to encode lycopene β-cyclase and is necessary for the accumulation of both abscisic acid and the carotenoid zeaxanthin in mature maize embryos. This study demonstrates the utility of an Ac mutagenesis program to efficiently generate allelic diversity at closely linked loci in maize.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.010249</identifier><identifier>PMID: 12671084</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Abscisic Acid - metabolism ; Alleles ; Amino Acid Sequence ; Base Sequence ; beta Carotene - analogs & derivatives ; beta Carotene - metabolism ; Carotenoids ; Carotenoids - metabolism ; Corn ; DNA Transposable Elements - genetics ; Embryos ; Gels ; Genetic loci ; Genetic transposition ; Intramolecular Lyases - genetics ; Intramolecular Lyases - metabolism ; Molecular Sequence Data ; Mutagenesis ; Mutagenesis, Insertional - methods ; Plant cells ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Polymerase chain reaction ; Seeds - enzymology ; Seeds - genetics ; Sequence Homology, Amino Acid ; Xanthophylls ; Zea mays - enzymology ; Zea mays - genetics ; Zeaxanthins</subject><ispartof>The Plant cell, 2003-04, Vol.15 (4), p.874-884</ispartof><rights>Copyright 2003 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Physiologists Apr 2003</rights><rights>Copyright © 2003, American Society of Plant Biologists 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-227c743058598704a18d4085eca755007ac4e538bc224e7c17d19a41f7d68bab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3871895$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3871895$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12671084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Manjit</creatorcontrib><creatorcontrib>Lewis, Paul E.</creatorcontrib><creatorcontrib>Hardeman, Kristine</creatorcontrib><creatorcontrib>Bai, Ling</creatorcontrib><creatorcontrib>Jocelyn K. C. Rose</creatorcontrib><creatorcontrib>Mazourek, Michael</creatorcontrib><creatorcontrib>Chomet, Paul</creatorcontrib><creatorcontrib>Brutnell, Thomas P.</creatorcontrib><title>Activator Mutagenesis of the Pink scutellum1/viviparous7 Locus of Maize</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions associated with Ac and its nonautonomous deletion derivative Ds. To overcome these limitations, we are developing a series of nearly isogenic maize lines, each with a single active Ac element positioned at a well-defined location. These Ac elements are distributed at 10- to 20-centimorgan intervals throughout the genome for use in regional mutagenesis. Here, we demonstrate the utility of this Ac-based gene-tagging approach through the targeted mutagenesis of the pink scutellum1/viviparous7 (ps1/vp7) locus. Using a novel PCR-based technique, the Ps1 gene was cloned and Ac elements positioned precisely in each of the seven alleles recovered. The Ps1 gene is predicted to encode lycopene β-cyclase and is necessary for the accumulation of both abscisic acid and the carotenoid zeaxanthin in mature maize embryos. This study demonstrates the utility of an Ac mutagenesis program to efficiently generate allelic diversity at closely linked loci in maize.</description><subject>Abscisic Acid - metabolism</subject><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>beta Carotene - analogs & derivatives</subject><subject>beta Carotene - metabolism</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Corn</subject><subject>DNA Transposable Elements - genetics</subject><subject>Embryos</subject><subject>Gels</subject><subject>Genetic loci</subject><subject>Genetic transposition</subject><subject>Intramolecular Lyases - genetics</subject><subject>Intramolecular Lyases - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Insertional - methods</subject><subject>Plant cells</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Polymerase chain reaction</subject><subject>Seeds - enzymology</subject><subject>Seeds - genetics</subject><subject>Sequence Homology, Amino Acid</subject><subject>Xanthophylls</subject><subject>Zea mays - enzymology</subject><subject>Zea mays - genetics</subject><subject>Zeaxanthins</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkctLAzEQh4Movi-eRRYPHoTVmWyyyR48iPiCih4UvIU0TTW13dQkW9C_3miLr9ME5pthfvkI2UE4QgR-nKbmCBAoa5bIOvKKlrSRj8v5DQxKVnNcIxsxjgAABTarZA1pLRAkWyeXpya5mU4-FDdd0k-2tdHFwg-L9GyLO9e-FNF0yY7H3QSPZ27mpjr4Loqi5033Bd5o9263yMpQj6PdXtRN8nBxfn92VfZuL6_PTnulYZKlklJhBKuAS95IAUyjHDCQ3BotOAcQ2jDLK9k3lDIrDIoBNprhUAxq2df9apOczPdOu_7EDoxtU9BjNQ1uosOb8tqpv53WPasnP1PIaVXVef5gMR_8a2djUhMXTY6nW5tjKZQy_xqKDO7_A0e-C23OpihKIWugkKHDOWSCjzHY4fchCOrTjcpu1NxNhvd-n_6DLmRkYHcOjGL28d2vpEDZ8OoDtAKTHw</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Singh, Manjit</creator><creator>Lewis, Paul E.</creator><creator>Hardeman, Kristine</creator><creator>Bai, Ling</creator><creator>Jocelyn K. C. Rose</creator><creator>Mazourek, Michael</creator><creator>Chomet, Paul</creator><creator>Brutnell, Thomas P.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20030401</creationdate><title>Activator Mutagenesis of the Pink scutellum1/viviparous7 Locus of Maize</title><author>Singh, Manjit ; Lewis, Paul E. ; Hardeman, Kristine ; Bai, Ling ; Jocelyn K. C. Rose ; Mazourek, Michael ; Chomet, Paul ; Brutnell, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-227c743058598704a18d4085eca755007ac4e538bc224e7c17d19a41f7d68bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Abscisic Acid - metabolism</topic><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>beta Carotene - analogs & derivatives</topic><topic>beta Carotene - metabolism</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Corn</topic><topic>DNA Transposable Elements - genetics</topic><topic>Embryos</topic><topic>Gels</topic><topic>Genetic loci</topic><topic>Genetic transposition</topic><topic>Intramolecular Lyases - genetics</topic><topic>Intramolecular Lyases - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Insertional - methods</topic><topic>Plant cells</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Polymerase chain reaction</topic><topic>Seeds - enzymology</topic><topic>Seeds - genetics</topic><topic>Sequence Homology, Amino Acid</topic><topic>Xanthophylls</topic><topic>Zea mays - enzymology</topic><topic>Zea mays - genetics</topic><topic>Zeaxanthins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Manjit</creatorcontrib><creatorcontrib>Lewis, Paul E.</creatorcontrib><creatorcontrib>Hardeman, Kristine</creatorcontrib><creatorcontrib>Bai, Ling</creatorcontrib><creatorcontrib>Jocelyn K. C. Rose</creatorcontrib><creatorcontrib>Mazourek, Michael</creatorcontrib><creatorcontrib>Chomet, Paul</creatorcontrib><creatorcontrib>Brutnell, Thomas P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Manjit</au><au>Lewis, Paul E.</au><au>Hardeman, Kristine</au><au>Bai, Ling</au><au>Jocelyn K. C. Rose</au><au>Mazourek, Michael</au><au>Chomet, Paul</au><au>Brutnell, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activator Mutagenesis of the Pink scutellum1/viviparous7 Locus of Maize</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>15</volume><issue>4</issue><spage>874</spage><epage>884</epage><pages>874-884</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The transposable elements Activator/Dissociation (Ac/Ds) were first discovered in maize, yet they have not been used extensively in their native host for gene-tagging experiments. This can be attributed largely to the low forward mutation rate and the propensity for closely linked transpositions associated with Ac and its nonautonomous deletion derivative Ds. To overcome these limitations, we are developing a series of nearly isogenic maize lines, each with a single active Ac element positioned at a well-defined location. These Ac elements are distributed at 10- to 20-centimorgan intervals throughout the genome for use in regional mutagenesis. Here, we demonstrate the utility of this Ac-based gene-tagging approach through the targeted mutagenesis of the pink scutellum1/viviparous7 (ps1/vp7) locus. Using a novel PCR-based technique, the Ps1 gene was cloned and Ac elements positioned precisely in each of the seven alleles recovered. The Ps1 gene is predicted to encode lycopene β-cyclase and is necessary for the accumulation of both abscisic acid and the carotenoid zeaxanthin in mature maize embryos. This study demonstrates the utility of an Ac mutagenesis program to efficiently generate allelic diversity at closely linked loci in maize.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>12671084</pmid><doi>10.1105/tpc.010249</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 2003-04, Vol.15 (4), p.874-884 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_152336 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abscisic Acid - metabolism Alleles Amino Acid Sequence Base Sequence beta Carotene - analogs & derivatives beta Carotene - metabolism Carotenoids Carotenoids - metabolism Corn DNA Transposable Elements - genetics Embryos Gels Genetic loci Genetic transposition Intramolecular Lyases - genetics Intramolecular Lyases - metabolism Molecular Sequence Data Mutagenesis Mutagenesis, Insertional - methods Plant cells Plant Proteins - genetics Plant Proteins - metabolism Polymerase chain reaction Seeds - enzymology Seeds - genetics Sequence Homology, Amino Acid Xanthophylls Zea mays - enzymology Zea mays - genetics Zeaxanthins |
title | Activator Mutagenesis of the Pink scutellum1/viviparous7 Locus of Maize |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activator%20Mutagenesis%20of%20the%20Pink%20scutellum1/viviparous7%20Locus%20of%20Maize&rft.jtitle=The%20Plant%20cell&rft.au=Singh,%20Manjit&rft.date=2003-04-01&rft.volume=15&rft.issue=4&rft.spage=874&rft.epage=884&rft.pages=874-884&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.010249&rft_dat=%3Cjstor_pubme%3E3871895%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218786020&rft_id=info:pmid/12671084&rft_jstor_id=3871895&rfr_iscdi=true |