Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro

Eg5, a member of the kinesin superfamily of microtubule-based motors, is essential for bipolar spindle assembly and maintenance during mitosis, yet little is known about the mechanisms by which it accomplishes these tasks. Here, we used an automated optical trapping apparatus in conjunction with a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2006-05, Vol.8 (5), p.470-476
Hauptverfasser: Valentine, Megan T., Fordyce, Polly M., Krzysiak, Troy C., Gilbert, Susan P., Block, Steven M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 5
container_start_page 470
container_title Nature cell biology
container_volume 8
creator Valentine, Megan T.
Fordyce, Polly M.
Krzysiak, Troy C.
Gilbert, Susan P.
Block, Steven M.
description Eg5, a member of the kinesin superfamily of microtubule-based motors, is essential for bipolar spindle assembly and maintenance during mitosis, yet little is known about the mechanisms by which it accomplishes these tasks. Here, we used an automated optical trapping apparatus in conjunction with a novel motility assay that employed chemically modified surfaces to probe the mechanochemistry of Eg5. Individual dimers, formed by a recombinant human construct Eg5–513–5His, stepped processively along microtubules in 8-nm increments, with short run lengths averaging approximately eight steps. By varying the applied load (with a force clamp) and the ATP concentration, we found that the velocity of Eg5 was slower and less sensitive to external load than that of conventional kinesin, possibly reflecting the distinct demands of spindle assembly as compared with vesicle transport. The Eg5–513–5His velocity data were described by a minimal, three-state model where a force-dependent transition follows nucleotide binding.
doi_str_mv 10.1038/ncb1394
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1523314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183058797</galeid><sourcerecordid>A183058797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-b864bd50410995d4dcacae8d627d7815e3433278168454465c01428bfe9901ba3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqUg_gGyOEA5pNiJP-ILUlWVslIlJD7OlmNPtm4TO9jOiv57vNoVZXvBlxl5nnntdzRV9ZrgM4Lb7qM3PWklfVIdEyp4TbmQT7c5Z7VoZXNUvUjpFmNCKRbPqyPCOaaYs-PqbuWt2zi76BFZN0FMKAwo3wCaXA7ZGXTnPCTn0RRyiOhyzVDKMKM5BgMpuQ2M90h7i9IyzyHmEvuUtc-uKI5B24RK88blGF5WzwY9Jni1jyfVz8-XPy6-1Ndfr1YX59e1YVLkuu847S3DlGApmaXWaKOhs7wRVnSEQUvbtikZ7yijxaIpvpquH0BKTHrdnlSfdrrz0k9gDfgc9ajm6CYd71XQTh1WvLtR67BRhDVtS2gReLcXiOHXAimrySUD46g9hCWpMl0my-P_BYkgUjSYFPDtI_A2LNGXKaimHIk7wQt0toPWegTl_BDK77bmLUzOBA-DK_fnpGsx64QUpeHDQUNhMvzOa72kpFbfvx2y73esiSGlCMPfeRCstjuk9jtUyDf_ju-B2y9NAU53QColv4b4YOax1h8LDc79</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222290876</pqid></control><display><type>article</type><title>Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro</title><source>MEDLINE</source><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Valentine, Megan T. ; Fordyce, Polly M. ; Krzysiak, Troy C. ; Gilbert, Susan P. ; Block, Steven M.</creator><creatorcontrib>Valentine, Megan T. ; Fordyce, Polly M. ; Krzysiak, Troy C. ; Gilbert, Susan P. ; Block, Steven M.</creatorcontrib><description>Eg5, a member of the kinesin superfamily of microtubule-based motors, is essential for bipolar spindle assembly and maintenance during mitosis, yet little is known about the mechanisms by which it accomplishes these tasks. Here, we used an automated optical trapping apparatus in conjunction with a novel motility assay that employed chemically modified surfaces to probe the mechanochemistry of Eg5. Individual dimers, formed by a recombinant human construct Eg5–513–5His, stepped processively along microtubules in 8-nm increments, with short run lengths averaging approximately eight steps. By varying the applied load (with a force clamp) and the ATP concentration, we found that the velocity of Eg5 was slower and less sensitive to external load than that of conventional kinesin, possibly reflecting the distinct demands of spindle assembly as compared with vesicle transport. The Eg5–513–5His velocity data were described by a minimal, three-state model where a force-dependent transition follows nucleotide binding.</description><identifier>ISSN: 1465-7392</identifier><identifier>ISSN: 1476-4679</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1394</identifier><identifier>PMID: 16604065</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Assaying ; ATP ; Biomechanical Phenomena ; Biomedical and Life Sciences ; Cancer Research ; Cattle ; Cell Biology ; Chemical properties ; Developmental Biology ; Dimerization ; Histidine ; Humans ; Kinesin ; Kinesin - chemistry ; Kinesin - metabolism ; Kinetics ; letter ; Life Sciences ; Mechanical chemistry ; Mechanical properties ; Methods ; Mitosis ; Molecular Motor Proteins - chemistry ; Molecular Motor Proteins - metabolism ; Motility ; Oligopeptides ; Physiological aspects ; Protein Structure, Quaternary ; Recombinant Fusion Proteins - metabolism ; Stem Cells ; Trapping ; Velocity</subject><ispartof>Nature cell biology, 2006-05, Vol.8 (5), p.470-476</ispartof><rights>Springer Nature Limited 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-b864bd50410995d4dcacae8d627d7815e3433278168454465c01428bfe9901ba3</citedby><cites>FETCH-LOGICAL-c597t-b864bd50410995d4dcacae8d627d7815e3433278168454465c01428bfe9901ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1394$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1394$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16604065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valentine, Megan T.</creatorcontrib><creatorcontrib>Fordyce, Polly M.</creatorcontrib><creatorcontrib>Krzysiak, Troy C.</creatorcontrib><creatorcontrib>Gilbert, Susan P.</creatorcontrib><creatorcontrib>Block, Steven M.</creatorcontrib><title>Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Eg5, a member of the kinesin superfamily of microtubule-based motors, is essential for bipolar spindle assembly and maintenance during mitosis, yet little is known about the mechanisms by which it accomplishes these tasks. Here, we used an automated optical trapping apparatus in conjunction with a novel motility assay that employed chemically modified surfaces to probe the mechanochemistry of Eg5. Individual dimers, formed by a recombinant human construct Eg5–513–5His, stepped processively along microtubules in 8-nm increments, with short run lengths averaging approximately eight steps. By varying the applied load (with a force clamp) and the ATP concentration, we found that the velocity of Eg5 was slower and less sensitive to external load than that of conventional kinesin, possibly reflecting the distinct demands of spindle assembly as compared with vesicle transport. The Eg5–513–5His velocity data were described by a minimal, three-state model where a force-dependent transition follows nucleotide binding.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Assaying</subject><subject>ATP</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cattle</subject><subject>Cell Biology</subject><subject>Chemical properties</subject><subject>Developmental Biology</subject><subject>Dimerization</subject><subject>Histidine</subject><subject>Humans</subject><subject>Kinesin</subject><subject>Kinesin - chemistry</subject><subject>Kinesin - metabolism</subject><subject>Kinetics</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mechanical chemistry</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Mitosis</subject><subject>Molecular Motor Proteins - chemistry</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>Motility</subject><subject>Oligopeptides</subject><subject>Physiological aspects</subject><subject>Protein Structure, Quaternary</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Stem Cells</subject><subject>Trapping</subject><subject>Velocity</subject><issn>1465-7392</issn><issn>1476-4679</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkk1v1DAQhiMEoqUg_gGyOEA5pNiJP-ILUlWVslIlJD7OlmNPtm4TO9jOiv57vNoVZXvBlxl5nnntdzRV9ZrgM4Lb7qM3PWklfVIdEyp4TbmQT7c5Z7VoZXNUvUjpFmNCKRbPqyPCOaaYs-PqbuWt2zi76BFZN0FMKAwo3wCaXA7ZGXTnPCTn0RRyiOhyzVDKMKM5BgMpuQ2M90h7i9IyzyHmEvuUtc-uKI5B24RK88blGF5WzwY9Jni1jyfVz8-XPy6-1Ndfr1YX59e1YVLkuu847S3DlGApmaXWaKOhs7wRVnSEQUvbtikZ7yijxaIpvpquH0BKTHrdnlSfdrrz0k9gDfgc9ajm6CYd71XQTh1WvLtR67BRhDVtS2gReLcXiOHXAimrySUD46g9hCWpMl0my-P_BYkgUjSYFPDtI_A2LNGXKaimHIk7wQt0toPWegTl_BDK77bmLUzOBA-DK_fnpGsx64QUpeHDQUNhMvzOa72kpFbfvx2y73esiSGlCMPfeRCstjuk9jtUyDf_ju-B2y9NAU53QColv4b4YOax1h8LDc79</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Valentine, Megan T.</creator><creator>Fordyce, Polly M.</creator><creator>Krzysiak, Troy C.</creator><creator>Gilbert, Susan P.</creator><creator>Block, Steven M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060501</creationdate><title>Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro</title><author>Valentine, Megan T. ; Fordyce, Polly M. ; Krzysiak, Troy C. ; Gilbert, Susan P. ; Block, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-b864bd50410995d4dcacae8d627d7815e3433278168454465c01428bfe9901ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Assaying</topic><topic>ATP</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cattle</topic><topic>Cell Biology</topic><topic>Chemical properties</topic><topic>Developmental Biology</topic><topic>Dimerization</topic><topic>Histidine</topic><topic>Humans</topic><topic>Kinesin</topic><topic>Kinesin - chemistry</topic><topic>Kinesin - metabolism</topic><topic>Kinetics</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mechanical chemistry</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Mitosis</topic><topic>Molecular Motor Proteins - chemistry</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>Motility</topic><topic>Oligopeptides</topic><topic>Physiological aspects</topic><topic>Protein Structure, Quaternary</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Stem Cells</topic><topic>Trapping</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valentine, Megan T.</creatorcontrib><creatorcontrib>Fordyce, Polly M.</creatorcontrib><creatorcontrib>Krzysiak, Troy C.</creatorcontrib><creatorcontrib>Gilbert, Susan P.</creatorcontrib><creatorcontrib>Block, Steven M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valentine, Megan T.</au><au>Fordyce, Polly M.</au><au>Krzysiak, Troy C.</au><au>Gilbert, Susan P.</au><au>Block, Steven M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>8</volume><issue>5</issue><spage>470</spage><epage>476</epage><pages>470-476</pages><issn>1465-7392</issn><issn>1476-4679</issn><eissn>1476-4679</eissn><abstract>Eg5, a member of the kinesin superfamily of microtubule-based motors, is essential for bipolar spindle assembly and maintenance during mitosis, yet little is known about the mechanisms by which it accomplishes these tasks. Here, we used an automated optical trapping apparatus in conjunction with a novel motility assay that employed chemically modified surfaces to probe the mechanochemistry of Eg5. Individual dimers, formed by a recombinant human construct Eg5–513–5His, stepped processively along microtubules in 8-nm increments, with short run lengths averaging approximately eight steps. By varying the applied load (with a force clamp) and the ATP concentration, we found that the velocity of Eg5 was slower and less sensitive to external load than that of conventional kinesin, possibly reflecting the distinct demands of spindle assembly as compared with vesicle transport. The Eg5–513–5His velocity data were described by a minimal, three-state model where a force-dependent transition follows nucleotide binding.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16604065</pmid><doi>10.1038/ncb1394</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2006-05, Vol.8 (5), p.470-476
issn 1465-7392
1476-4679
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1523314
source MEDLINE; Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings
subjects Adenosine Triphosphate - metabolism
Animals
Assaying
ATP
Biomechanical Phenomena
Biomedical and Life Sciences
Cancer Research
Cattle
Cell Biology
Chemical properties
Developmental Biology
Dimerization
Histidine
Humans
Kinesin
Kinesin - chemistry
Kinesin - metabolism
Kinetics
letter
Life Sciences
Mechanical chemistry
Mechanical properties
Methods
Mitosis
Molecular Motor Proteins - chemistry
Molecular Motor Proteins - metabolism
Motility
Oligopeptides
Physiological aspects
Protein Structure, Quaternary
Recombinant Fusion Proteins - metabolism
Stem Cells
Trapping
Velocity
title Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual%20dimers%20of%20the%20mitotic%20kinesin%20motor%20Eg5%20step%20processively%20and%20support%20substantial%20loads%20in%20vitro&rft.jtitle=Nature%20cell%20biology&rft.au=Valentine,%20Megan%20T.&rft.date=2006-05-01&rft.volume=8&rft.issue=5&rft.spage=470&rft.epage=476&rft.pages=470-476&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1394&rft_dat=%3Cgale_pubme%3EA183058797%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222290876&rft_id=info:pmid/16604065&rft_galeid=A183058797&rfr_iscdi=true