Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers
UVA light (320–400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), β-nicotinamide adenine dinucleotide (NAD), and β-...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2006-08, Vol.91 (4), p.1452-1459 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1459 |
---|---|
container_issue | 4 |
container_start_page | 1452 |
container_title | Biophysical journal |
container_volume | 91 |
creator | Baier, Jürgen Maisch, Tim Maier, Max Engel, Eva Landthaler, Michael Bäumler, Wolfgang |
description | UVA light (320–400
nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD),
β-nicotinamide adenine dinucleotide (NAD), and
β-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355
nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270
nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355
nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (Φ
Δ
=
0.54
±
0.07), FMN (Φ
Δ
=
0.51
±
0.07), and FAD (Φ
Δ
=
0.07
±
0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue). |
doi_str_mv | 10.1529/biophysj.106.082388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1518628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349506718562</els_id><sourcerecordid>1095142801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-9abd29d43306c5651171fae4fd9f2b9fa7c98df18a2e17f4ba2e96c0cd1f72623</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVpaNy0n6BQRO_rStqVVjq0EIKTFkwTaNOr2JVGtowjuZI2xP30VbD775LTwMxv3jzmIfSGkjnlTL0ffdyt93kzp0TMiWStlM_QjPKONYRI8RzNCCGiaTvFT9HLnDeEUMYJfYFOqeg5ZW03Q1---rDaQsHXD_sVBHwFAdJQfAx43OPb7-d46VfrghcPu5inBDg6vAg2VjZOGd-sY4kZQvbF_4SUX6ETN2wzvD7WM3R7ufh28alZXl99vjhfNqaTXWnUMFqmbNe2RBguOKU9dQN0zirHRuWG3ihpHZUDA9q7bqxVCUOMpa5ngrVn6ONBdzeNd2ANhJKGrd4lfzekvY6D1_9Pgl_rVbzXlFMpmKwC744CKf6YIBe9iVMK1bNmlPekb4mqUHuATIo5J3B_DlCiHzPQvzOoDaEPGdStt_96-7tzfHoFPhwAqB-695B0Nh6CAesTmKJt9E8e-AUXapv9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215707309</pqid></control><display><type>article</type><title>Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Baier, Jürgen ; Maisch, Tim ; Maier, Max ; Engel, Eva ; Landthaler, Michael ; Bäumler, Wolfgang</creator><creatorcontrib>Baier, Jürgen ; Maisch, Tim ; Maier, Max ; Engel, Eva ; Landthaler, Michael ; Bäumler, Wolfgang</creatorcontrib><description>UVA light (320–400
nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD),
β-nicotinamide adenine dinucleotide (NAD), and
β-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355
nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270
nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355
nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (Φ
Δ
=
0.54
±
0.07), FMN (Φ
Δ
=
0.51
±
0.07), and FAD (Φ
Δ
=
0.07
±
0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue).</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.106.082388</identifier><identifier>PMID: 16751234</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biological Factors - chemistry ; Biological Factors - radiation effects ; Dose-Response Relationship, Radiation ; Environmental Exposure ; Flavins - chemistry ; Flavins - radiation effects ; Luminescence ; Nucleic Acids ; Oxygen ; Oxygen - chemistry ; Photosensitizing Agents - chemistry ; Photosensitizing Agents - radiation effects ; Photosynthesis ; Radiation Dosage ; Tissues ; Ultraviolet radiation ; Ultraviolet Rays</subject><ispartof>Biophysical journal, 2006-08, Vol.91 (4), p.1452-1459</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Aug 15, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-9abd29d43306c5651171fae4fd9f2b9fa7c98df18a2e17f4ba2e96c0cd1f72623</citedby><cites>FETCH-LOGICAL-c484t-9abd29d43306c5651171fae4fd9f2b9fa7c98df18a2e17f4ba2e96c0cd1f72623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1518628/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.106.082388$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16751234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baier, Jürgen</creatorcontrib><creatorcontrib>Maisch, Tim</creatorcontrib><creatorcontrib>Maier, Max</creatorcontrib><creatorcontrib>Engel, Eva</creatorcontrib><creatorcontrib>Landthaler, Michael</creatorcontrib><creatorcontrib>Bäumler, Wolfgang</creatorcontrib><title>Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>UVA light (320–400
nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD),
β-nicotinamide adenine dinucleotide (NAD), and
β-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355
nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270
nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355
nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (Φ
Δ
=
0.54
±
0.07), FMN (Φ
Δ
=
0.51
±
0.07), and FAD (Φ
Δ
=
0.07
±
0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue).</description><subject>Biological Factors - chemistry</subject><subject>Biological Factors - radiation effects</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Environmental Exposure</subject><subject>Flavins - chemistry</subject><subject>Flavins - radiation effects</subject><subject>Luminescence</subject><subject>Nucleic Acids</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Photosensitizing Agents - chemistry</subject><subject>Photosensitizing Agents - radiation effects</subject><subject>Photosynthesis</subject><subject>Radiation Dosage</subject><subject>Tissues</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9rGzEQxUVpaNy0n6BQRO_rStqVVjq0EIKTFkwTaNOr2JVGtowjuZI2xP30VbD775LTwMxv3jzmIfSGkjnlTL0ffdyt93kzp0TMiWStlM_QjPKONYRI8RzNCCGiaTvFT9HLnDeEUMYJfYFOqeg5ZW03Q1---rDaQsHXD_sVBHwFAdJQfAx43OPb7-d46VfrghcPu5inBDg6vAg2VjZOGd-sY4kZQvbF_4SUX6ETN2wzvD7WM3R7ufh28alZXl99vjhfNqaTXWnUMFqmbNe2RBguOKU9dQN0zirHRuWG3ihpHZUDA9q7bqxVCUOMpa5ngrVn6ONBdzeNd2ANhJKGrd4lfzekvY6D1_9Pgl_rVbzXlFMpmKwC744CKf6YIBe9iVMK1bNmlPekb4mqUHuATIo5J3B_DlCiHzPQvzOoDaEPGdStt_96-7tzfHoFPhwAqB-695B0Nh6CAesTmKJt9E8e-AUXapv9</recordid><startdate>20060815</startdate><enddate>20060815</enddate><creator>Baier, Jürgen</creator><creator>Maisch, Tim</creator><creator>Maier, Max</creator><creator>Engel, Eva</creator><creator>Landthaler, Michael</creator><creator>Bäumler, Wolfgang</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20060815</creationdate><title>Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers</title><author>Baier, Jürgen ; Maisch, Tim ; Maier, Max ; Engel, Eva ; Landthaler, Michael ; Bäumler, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-9abd29d43306c5651171fae4fd9f2b9fa7c98df18a2e17f4ba2e96c0cd1f72623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological Factors - chemistry</topic><topic>Biological Factors - radiation effects</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Environmental Exposure</topic><topic>Flavins - chemistry</topic><topic>Flavins - radiation effects</topic><topic>Luminescence</topic><topic>Nucleic Acids</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Photosensitizing Agents - chemistry</topic><topic>Photosensitizing Agents - radiation effects</topic><topic>Photosynthesis</topic><topic>Radiation Dosage</topic><topic>Tissues</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baier, Jürgen</creatorcontrib><creatorcontrib>Maisch, Tim</creatorcontrib><creatorcontrib>Maier, Max</creatorcontrib><creatorcontrib>Engel, Eva</creatorcontrib><creatorcontrib>Landthaler, Michael</creatorcontrib><creatorcontrib>Bäumler, Wolfgang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baier, Jürgen</au><au>Maisch, Tim</au><au>Maier, Max</au><au>Engel, Eva</au><au>Landthaler, Michael</au><au>Bäumler, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-08-15</date><risdate>2006</risdate><volume>91</volume><issue>4</issue><spage>1452</spage><epage>1459</epage><pages>1452-1459</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>UVA light (320–400
nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD),
β-nicotinamide adenine dinucleotide (NAD), and
β-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355
nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270
nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355
nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (Φ
Δ
=
0.54
±
0.07), FMN (Φ
Δ
=
0.51
±
0.07), and FAD (Φ
Δ
=
0.07
±
0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue).</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16751234</pmid><doi>10.1529/biophysj.106.082388</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2006-08, Vol.91 (4), p.1452-1459 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1518628 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biological Factors - chemistry Biological Factors - radiation effects Dose-Response Relationship, Radiation Environmental Exposure Flavins - chemistry Flavins - radiation effects Luminescence Nucleic Acids Oxygen Oxygen - chemistry Photosensitizing Agents - chemistry Photosensitizing Agents - radiation effects Photosynthesis Radiation Dosage Tissues Ultraviolet radiation Ultraviolet Rays |
title | Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singlet%20Oxygen%20Generation%20by%20UVA%20Light%20Exposure%20of%20Endogenous%20Photosensitizers&rft.jtitle=Biophysical%20journal&rft.au=Baier,%20J%C3%BCrgen&rft.date=2006-08-15&rft.volume=91&rft.issue=4&rft.spage=1452&rft.epage=1459&rft.pages=1452-1459&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.106.082388&rft_dat=%3Cproquest_pubme%3E1095142801%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215707309&rft_id=info:pmid/16751234&rft_els_id=S0006349506718562&rfr_iscdi=true |