ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane
A second form of the enzyme acyl-CoA:cholesterol acyltransferase, ACAT2, has been identified. To explore the hypothesis that the two ACAT enzymes have separate functions, the membrane topologies of ACAT1 and ACAT2 were examined. A glycosylation reporter and FLAG epitope tag sequence was appended to...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2000-11, Vol.11 (11), p.3675-3687 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3687 |
---|---|
container_issue | 11 |
container_start_page | 3675 |
container_title | Molecular biology of the cell |
container_volume | 11 |
creator | Joyce, C W Shelness, G S Davis, M A Lee, R G Skinner, K Anderson, R A Rudel, L L |
description | A second form of the enzyme acyl-CoA:cholesterol acyltransferase, ACAT2, has been identified. To explore the hypothesis that the two ACAT enzymes have separate functions, the membrane topologies of ACAT1 and ACAT2 were examined. A glycosylation reporter and FLAG epitope tag sequence was appended to a series of ACAT cDNAs truncated after each predicted transmembrane domain. Fusion constructs were assembled into microsomal membranes, in vitro, and topologies were determined based on glycosylation site use and accessibility to exogenous protease. The accessibility of the C-terminal FLAG epitope in constructs was determined by immunofluorescence microscopy of permeabilized transfected cells. Both ACAT1 and ACAT2 span the membrane five times with their N termini in the cytosol and C termini in the ER lumen. The fourth transmembrane domain is located in a different region for each protein, placing the putative active site ACAT1 serine (Ser(269)) in the cytosol and the analogous residue in ACAT2 (Ser(249)) in the ER lumen. Mutation of these serines inactivated the ACAT enzymes. The outcome is consistent with the hypothesis that cholesterol ester formation by ACAT2 may be coupled to lipoprotein particle assembly and secretion, whereas ACAT1 may function primarily to maintain the balance of free and esterified cholesterol intracellularly. |
doi_str_mv | 10.1091/mbc.11.11.3675 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_15029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11071899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-1b4b78f05282a6fdc0e3ea8e1a89280cd4639c3e66b96728120f17b3e6c1be8d3</originalsourceid><addsrcrecordid>eNpVkdtKAzEQhoMoWqu3XkpeYGsme0rAm1I8geBNvV6y2dk2srtZkrTQd_ChzVLxAAMzmfm_GcJPyA2wBTAJd32tFwBTpEWZn5AZyFQmWS6K01izXCaQ8-yCXHr_wRhkWVGekwsAVoKQckY-l6vlGqgaGjpVnPbY104NSIMdbWc3B-px43CjAnqq4sOZOHToTbNDit7jEIzqaGsdVTqYvQmHyFI7jtabgDQKI2lbGrZRPzR27JTvjY47gtG7btf_3LwiZ63qPF5_5zl5f3xYr56T17enl9XyNdGZ4CGBOqtL0bKcC66KttEMU1QCQQnJBdNNVqRSp1gUtSxKLoCzFso6NjTUKJp0Tu6Pe8dd3WOj4xec6qrRmV65Q2WVqf5PBrOtNnZfQc64jPjiiGtnvXfY_pDAqsmVKrpSAUwxuRKB27_3fuXfNqRfZXCMxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane</title><source>MEDLINE</source><source>PubMed (Medline)</source><source>Free Full-Text Journals in Chemistry</source><creator>Joyce, C W ; Shelness, G S ; Davis, M A ; Lee, R G ; Skinner, K ; Anderson, R A ; Rudel, L L</creator><contributor>Kaiser, Chris</contributor><creatorcontrib>Joyce, C W ; Shelness, G S ; Davis, M A ; Lee, R G ; Skinner, K ; Anderson, R A ; Rudel, L L ; Kaiser, Chris</creatorcontrib><description>A second form of the enzyme acyl-CoA:cholesterol acyltransferase, ACAT2, has been identified. To explore the hypothesis that the two ACAT enzymes have separate functions, the membrane topologies of ACAT1 and ACAT2 were examined. A glycosylation reporter and FLAG epitope tag sequence was appended to a series of ACAT cDNAs truncated after each predicted transmembrane domain. Fusion constructs were assembled into microsomal membranes, in vitro, and topologies were determined based on glycosylation site use and accessibility to exogenous protease. The accessibility of the C-terminal FLAG epitope in constructs was determined by immunofluorescence microscopy of permeabilized transfected cells. Both ACAT1 and ACAT2 span the membrane five times with their N termini in the cytosol and C termini in the ER lumen. The fourth transmembrane domain is located in a different region for each protein, placing the putative active site ACAT1 serine (Ser(269)) in the cytosol and the analogous residue in ACAT2 (Ser(249)) in the ER lumen. Mutation of these serines inactivated the ACAT enzymes. The outcome is consistent with the hypothesis that cholesterol ester formation by ACAT2 may be coupled to lipoprotein particle assembly and secretion, whereas ACAT1 may function primarily to maintain the balance of free and esterified cholesterol intracellularly.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.11.11.3675</identifier><identifier>PMID: 11071899</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Animals ; CHO Cells ; Computer Simulation ; Cricetinae ; Endoplasmic Reticulum - metabolism ; Intracellular Membranes - metabolism ; Intracellular Membranes - ultrastructure ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Models, Molecular ; Mutagenesis, Site-Directed ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Serine ; Sterol O-Acyltransferase - chemistry ; Sterol O-Acyltransferase - genetics ; Sterol O-Acyltransferase - metabolism</subject><ispartof>Molecular biology of the cell, 2000-11, Vol.11 (11), p.3675-3687</ispartof><rights>Copyright © 2000, The American Society for Cell Biology 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-1b4b78f05282a6fdc0e3ea8e1a89280cd4639c3e66b96728120f17b3e6c1be8d3</citedby><cites>FETCH-LOGICAL-c482t-1b4b78f05282a6fdc0e3ea8e1a89280cd4639c3e66b96728120f17b3e6c1be8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC15029/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC15029/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11071899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kaiser, Chris</contributor><creatorcontrib>Joyce, C W</creatorcontrib><creatorcontrib>Shelness, G S</creatorcontrib><creatorcontrib>Davis, M A</creatorcontrib><creatorcontrib>Lee, R G</creatorcontrib><creatorcontrib>Skinner, K</creatorcontrib><creatorcontrib>Anderson, R A</creatorcontrib><creatorcontrib>Rudel, L L</creatorcontrib><title>ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>A second form of the enzyme acyl-CoA:cholesterol acyltransferase, ACAT2, has been identified. To explore the hypothesis that the two ACAT enzymes have separate functions, the membrane topologies of ACAT1 and ACAT2 were examined. A glycosylation reporter and FLAG epitope tag sequence was appended to a series of ACAT cDNAs truncated after each predicted transmembrane domain. Fusion constructs were assembled into microsomal membranes, in vitro, and topologies were determined based on glycosylation site use and accessibility to exogenous protease. The accessibility of the C-terminal FLAG epitope in constructs was determined by immunofluorescence microscopy of permeabilized transfected cells. Both ACAT1 and ACAT2 span the membrane five times with their N termini in the cytosol and C termini in the ER lumen. The fourth transmembrane domain is located in a different region for each protein, placing the putative active site ACAT1 serine (Ser(269)) in the cytosol and the analogous residue in ACAT2 (Ser(249)) in the ER lumen. Mutation of these serines inactivated the ACAT enzymes. The outcome is consistent with the hypothesis that cholesterol ester formation by ACAT2 may be coupled to lipoprotein particle assembly and secretion, whereas ACAT1 may function primarily to maintain the balance of free and esterified cholesterol intracellularly.</description><subject>Animals</subject><subject>CHO Cells</subject><subject>Computer Simulation</subject><subject>Cricetinae</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - ultrastructure</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Serine</subject><subject>Sterol O-Acyltransferase - chemistry</subject><subject>Sterol O-Acyltransferase - genetics</subject><subject>Sterol O-Acyltransferase - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtKAzEQhoMoWqu3XkpeYGsme0rAm1I8geBNvV6y2dk2srtZkrTQd_ChzVLxAAMzmfm_GcJPyA2wBTAJd32tFwBTpEWZn5AZyFQmWS6K01izXCaQ8-yCXHr_wRhkWVGekwsAVoKQckY-l6vlGqgaGjpVnPbY104NSIMdbWc3B-px43CjAnqq4sOZOHToTbNDit7jEIzqaGsdVTqYvQmHyFI7jtabgDQKI2lbGrZRPzR27JTvjY47gtG7btf_3LwiZ63qPF5_5zl5f3xYr56T17enl9XyNdGZ4CGBOqtL0bKcC66KttEMU1QCQQnJBdNNVqRSp1gUtSxKLoCzFso6NjTUKJp0Tu6Pe8dd3WOj4xec6qrRmV65Q2WVqf5PBrOtNnZfQc64jPjiiGtnvXfY_pDAqsmVKrpSAUwxuRKB27_3fuXfNqRfZXCMxw</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Joyce, C W</creator><creator>Shelness, G S</creator><creator>Davis, M A</creator><creator>Lee, R G</creator><creator>Skinner, K</creator><creator>Anderson, R A</creator><creator>Rudel, L L</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20001101</creationdate><title>ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane</title><author>Joyce, C W ; Shelness, G S ; Davis, M A ; Lee, R G ; Skinner, K ; Anderson, R A ; Rudel, L L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-1b4b78f05282a6fdc0e3ea8e1a89280cd4639c3e66b96728120f17b3e6c1be8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>CHO Cells</topic><topic>Computer Simulation</topic><topic>Cricetinae</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - ultrastructure</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Serine</topic><topic>Sterol O-Acyltransferase - chemistry</topic><topic>Sterol O-Acyltransferase - genetics</topic><topic>Sterol O-Acyltransferase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joyce, C W</creatorcontrib><creatorcontrib>Shelness, G S</creatorcontrib><creatorcontrib>Davis, M A</creatorcontrib><creatorcontrib>Lee, R G</creatorcontrib><creatorcontrib>Skinner, K</creatorcontrib><creatorcontrib>Anderson, R A</creatorcontrib><creatorcontrib>Rudel, L L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joyce, C W</au><au>Shelness, G S</au><au>Davis, M A</au><au>Lee, R G</au><au>Skinner, K</au><au>Anderson, R A</au><au>Rudel, L L</au><au>Kaiser, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>11</volume><issue>11</issue><spage>3675</spage><epage>3687</epage><pages>3675-3687</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>A second form of the enzyme acyl-CoA:cholesterol acyltransferase, ACAT2, has been identified. To explore the hypothesis that the two ACAT enzymes have separate functions, the membrane topologies of ACAT1 and ACAT2 were examined. A glycosylation reporter and FLAG epitope tag sequence was appended to a series of ACAT cDNAs truncated after each predicted transmembrane domain. Fusion constructs were assembled into microsomal membranes, in vitro, and topologies were determined based on glycosylation site use and accessibility to exogenous protease. The accessibility of the C-terminal FLAG epitope in constructs was determined by immunofluorescence microscopy of permeabilized transfected cells. Both ACAT1 and ACAT2 span the membrane five times with their N termini in the cytosol and C termini in the ER lumen. The fourth transmembrane domain is located in a different region for each protein, placing the putative active site ACAT1 serine (Ser(269)) in the cytosol and the analogous residue in ACAT2 (Ser(249)) in the ER lumen. Mutation of these serines inactivated the ACAT enzymes. The outcome is consistent with the hypothesis that cholesterol ester formation by ACAT2 may be coupled to lipoprotein particle assembly and secretion, whereas ACAT1 may function primarily to maintain the balance of free and esterified cholesterol intracellularly.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>11071899</pmid><doi>10.1091/mbc.11.11.3675</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2000-11, Vol.11 (11), p.3675-3687 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_15029 |
source | MEDLINE; PubMed (Medline); Free Full-Text Journals in Chemistry |
subjects | Animals CHO Cells Computer Simulation Cricetinae Endoplasmic Reticulum - metabolism Intracellular Membranes - metabolism Intracellular Membranes - ultrastructure Isoenzymes - genetics Isoenzymes - metabolism Models, Molecular Mutagenesis, Site-Directed Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Serine Sterol O-Acyltransferase - chemistry Sterol O-Acyltransferase - genetics Sterol O-Acyltransferase - metabolism |
title | ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACAT1%20and%20ACAT2%20membrane%20topology%20segregates%20a%20serine%20residue%20essential%20for%20activity%20to%20opposite%20sides%20of%20the%20endoplasmic%20reticulum%20membrane&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Joyce,%20C%20W&rft.date=2000-11-01&rft.volume=11&rft.issue=11&rft.spage=3675&rft.epage=3687&rft.pages=3675-3687&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.11.11.3675&rft_dat=%3Cpubmed_cross%3E11071899%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11071899&rfr_iscdi=true |