Hybridization kinetics and thermodynamics of molecular beacons

Molecular beacons are increasingly being used in many applications involving nucleic acid detection and quantification. The stem–loop structure of molecular beacons provides a competing reaction for probe–target hybridization that serves to increase probe specificity, which is particularly useful wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2003-02, Vol.31 (4), p.1319-1330
Hauptverfasser: Tsourkas, Andrew, Behlke, Mark A., Rose, Scott D., Bao, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1330
container_issue 4
container_start_page 1319
container_title Nucleic acids research
container_volume 31
creator Tsourkas, Andrew
Behlke, Mark A.
Rose, Scott D.
Bao, Gang
description Molecular beacons are increasingly being used in many applications involving nucleic acid detection and quantification. The stem–loop structure of molecular beacons provides a competing reaction for probe–target hybridization that serves to increase probe specificity, which is particularly useful when single‐base discrimination is desired. To fully realize the potential of molecular beacons, it is necessary to optimize their structure. Here we report a systematic study of the thermodynamic and kinetic parameters that describe the molecular beacon structure–function relationship. Both probe and stem lengths are shown to have a significant impact on the binding specificity and hybridization kinetic rates of molecular beacons. Specifically, molecular beacons with longer stem lengths have an improved ability to discriminate between targets over a broader range of temperatures. However, this is accompanied by a decrease in the rate of molecular beacon–target hybridization. Molecular beacons with longer probe lengths tend to have lower dissociation constants, increased kinetic rate constants, and decreased specificity. Molecular beacons with very short stems have a lower signal‐to‐background ratio than molecular beacons with longer stems. These features have significant implications for the design of molecular beacons for various applications.
doi_str_mv 10.1093/nar/gkg212
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_150230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18687324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-d398212570603b20d22182a48fb1570b6c6eaf1018a1783042e3ae77a361ba3a3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvChR-AIg4cKoWOx3HiHKiEwsciFXEABOJiTRJn625iFztBLL8eV7sqHxdOI73zzOideRl7xOEZh1qcOQpnm-0GOd5hKy5KzIu6xLtsBQJkzqFQR-w4xisAXnBZ3GdHHKVClLhi5-tdG2xvf9Jsvcu21pnZdjEj12fzpQmT73eOphvJD9nkR9MtI4WsNdR5Fx-wewON0Tw81BP26fWrj806v3j_5m3z4iLvpJBz3otaJXuyghJEi9AjcoVUqKHlSWzLrjQ0cOCKeKUEFGgEmaoiUfKWBIkT9ny_93ppJ9N3xs2BRn0d7ERhpz1Z_XfH2Uu98d81l4AC0vzTw3zw3xYTZz3Z2JlxJGf8EnUlILnD_4NclaoSWCTwyT_glV-CS0_QCCBVXWCdoNM91AUfYzDDrWMO-iY7nbLT--wS_PjPG3-jh7ASkO8BG2fz47ZPYavLSlRSr7981c27D83nBiv9UvwCNJ6kag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200589429</pqid></control><display><type>article</type><title>Hybridization kinetics and thermodynamics of molecular beacons</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tsourkas, Andrew ; Behlke, Mark A. ; Rose, Scott D. ; Bao, Gang</creator><creatorcontrib>Tsourkas, Andrew ; Behlke, Mark A. ; Rose, Scott D. ; Bao, Gang</creatorcontrib><description>Molecular beacons are increasingly being used in many applications involving nucleic acid detection and quantification. The stem–loop structure of molecular beacons provides a competing reaction for probe–target hybridization that serves to increase probe specificity, which is particularly useful when single‐base discrimination is desired. To fully realize the potential of molecular beacons, it is necessary to optimize their structure. Here we report a systematic study of the thermodynamic and kinetic parameters that describe the molecular beacon structure–function relationship. Both probe and stem lengths are shown to have a significant impact on the binding specificity and hybridization kinetic rates of molecular beacons. Specifically, molecular beacons with longer stem lengths have an improved ability to discriminate between targets over a broader range of temperatures. However, this is accompanied by a decrease in the rate of molecular beacon–target hybridization. Molecular beacons with longer probe lengths tend to have lower dissociation constants, increased kinetic rate constants, and decreased specificity. Molecular beacons with very short stems have a lower signal‐to‐background ratio than molecular beacons with longer stems. These features have significant implications for the design of molecular beacons for various applications.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkg212</identifier><identifier>PMID: 12582252</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>DNA Probes - chemistry ; DNA Probes - genetics ; Kinetics ; Nucleic Acid Conformation ; Nucleic Acid Denaturation ; Nucleic Acid Hybridization ; Temperature ; Thermodynamics</subject><ispartof>Nucleic acids research, 2003-02, Vol.31 (4), p.1319-1330</ispartof><rights>Copyright Oxford University Press(England) Feb 15, 2003</rights><rights>Copyright © 2003 Oxford University Press 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-d398212570603b20d22182a48fb1570b6c6eaf1018a1783042e3ae77a361ba3a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC150230/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC150230/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12582252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsourkas, Andrew</creatorcontrib><creatorcontrib>Behlke, Mark A.</creatorcontrib><creatorcontrib>Rose, Scott D.</creatorcontrib><creatorcontrib>Bao, Gang</creatorcontrib><title>Hybridization kinetics and thermodynamics of molecular beacons</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Molecular beacons are increasingly being used in many applications involving nucleic acid detection and quantification. The stem–loop structure of molecular beacons provides a competing reaction for probe–target hybridization that serves to increase probe specificity, which is particularly useful when single‐base discrimination is desired. To fully realize the potential of molecular beacons, it is necessary to optimize their structure. Here we report a systematic study of the thermodynamic and kinetic parameters that describe the molecular beacon structure–function relationship. Both probe and stem lengths are shown to have a significant impact on the binding specificity and hybridization kinetic rates of molecular beacons. Specifically, molecular beacons with longer stem lengths have an improved ability to discriminate between targets over a broader range of temperatures. However, this is accompanied by a decrease in the rate of molecular beacon–target hybridization. Molecular beacons with longer probe lengths tend to have lower dissociation constants, increased kinetic rate constants, and decreased specificity. Molecular beacons with very short stems have a lower signal‐to‐background ratio than molecular beacons with longer stems. These features have significant implications for the design of molecular beacons for various applications.</description><subject>DNA Probes - chemistry</subject><subject>DNA Probes - genetics</subject><subject>Kinetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Denaturation</subject><subject>Nucleic Acid Hybridization</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EotvChR-AIg4cKoWOx3HiHKiEwsciFXEABOJiTRJn625iFztBLL8eV7sqHxdOI73zzOideRl7xOEZh1qcOQpnm-0GOd5hKy5KzIu6xLtsBQJkzqFQR-w4xisAXnBZ3GdHHKVClLhi5-tdG2xvf9Jsvcu21pnZdjEj12fzpQmT73eOphvJD9nkR9MtI4WsNdR5Fx-wewON0Tw81BP26fWrj806v3j_5m3z4iLvpJBz3otaJXuyghJEi9AjcoVUqKHlSWzLrjQ0cOCKeKUEFGgEmaoiUfKWBIkT9ny_93ppJ9N3xs2BRn0d7ERhpz1Z_XfH2Uu98d81l4AC0vzTw3zw3xYTZz3Z2JlxJGf8EnUlILnD_4NclaoSWCTwyT_glV-CS0_QCCBVXWCdoNM91AUfYzDDrWMO-iY7nbLT--wS_PjPG3-jh7ASkO8BG2fz47ZPYavLSlRSr7981c27D83nBiv9UvwCNJ6kag</recordid><startdate>20030215</startdate><enddate>20030215</enddate><creator>Tsourkas, Andrew</creator><creator>Behlke, Mark A.</creator><creator>Rose, Scott D.</creator><creator>Bao, Gang</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030215</creationdate><title>Hybridization kinetics and thermodynamics of molecular beacons</title><author>Tsourkas, Andrew ; Behlke, Mark A. ; Rose, Scott D. ; Bao, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-d398212570603b20d22182a48fb1570b6c6eaf1018a1783042e3ae77a361ba3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>DNA Probes - chemistry</topic><topic>DNA Probes - genetics</topic><topic>Kinetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Denaturation</topic><topic>Nucleic Acid Hybridization</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsourkas, Andrew</creatorcontrib><creatorcontrib>Behlke, Mark A.</creatorcontrib><creatorcontrib>Rose, Scott D.</creatorcontrib><creatorcontrib>Bao, Gang</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsourkas, Andrew</au><au>Behlke, Mark A.</au><au>Rose, Scott D.</au><au>Bao, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybridization kinetics and thermodynamics of molecular beacons</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2003-02-15</date><risdate>2003</risdate><volume>31</volume><issue>4</issue><spage>1319</spage><epage>1330</epage><pages>1319-1330</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Molecular beacons are increasingly being used in many applications involving nucleic acid detection and quantification. The stem–loop structure of molecular beacons provides a competing reaction for probe–target hybridization that serves to increase probe specificity, which is particularly useful when single‐base discrimination is desired. To fully realize the potential of molecular beacons, it is necessary to optimize their structure. Here we report a systematic study of the thermodynamic and kinetic parameters that describe the molecular beacon structure–function relationship. Both probe and stem lengths are shown to have a significant impact on the binding specificity and hybridization kinetic rates of molecular beacons. Specifically, molecular beacons with longer stem lengths have an improved ability to discriminate between targets over a broader range of temperatures. However, this is accompanied by a decrease in the rate of molecular beacon–target hybridization. Molecular beacons with longer probe lengths tend to have lower dissociation constants, increased kinetic rate constants, and decreased specificity. Molecular beacons with very short stems have a lower signal‐to‐background ratio than molecular beacons with longer stems. These features have significant implications for the design of molecular beacons for various applications.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12582252</pmid><doi>10.1093/nar/gkg212</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2003-02, Vol.31 (4), p.1319-1330
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_150230
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects DNA Probes - chemistry
DNA Probes - genetics
Kinetics
Nucleic Acid Conformation
Nucleic Acid Denaturation
Nucleic Acid Hybridization
Temperature
Thermodynamics
title Hybridization kinetics and thermodynamics of molecular beacons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybridization%20kinetics%20and%20thermodynamics%20of%20molecular%20beacons&rft.jtitle=Nucleic%20acids%20research&rft.au=Tsourkas,%20Andrew&rft.date=2003-02-15&rft.volume=31&rft.issue=4&rft.spage=1319&rft.epage=1330&rft.pages=1319-1330&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkg212&rft_dat=%3Cproquest_pubme%3E18687324%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200589429&rft_id=info:pmid/12582252&rfr_iscdi=true