Thermal stability of PNA/DNA and DNA/DNA duplexes by differential scanning calorimetry

Thermodynamics of the thermal dissociation transitions of 10 bp PNA/DNA duplexes and their corresponding DNA/DNA duplexes in 10 mM sodium phosphate buffer (pH 7.0) were determined from differential scanning calorimetry (DSC) measurements. The PNA/DNA transition temperatures ranged from 329 to 343 K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 1999-12, Vol.27 (24), p.4801-4806
Hauptverfasser: Chakrabarti, Munna C., Schwarz, Frederick P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4806
container_issue 24
container_start_page 4801
container_title Nucleic acids research
container_volume 27
creator Chakrabarti, Munna C.
Schwarz, Frederick P.
description Thermodynamics of the thermal dissociation transitions of 10 bp PNA/DNA duplexes and their corresponding DNA/DNA duplexes in 10 mM sodium phosphate buffer (pH 7.0) were determined from differential scanning calorimetry (DSC) measurements. The PNA/DNA transition temperatures ranged from 329 to 343 K and the calorimetric transition enthalpies ranged from 209 ± 6 to 283 ± 37 kJ mol−1. The corresponding DNA/DNA transition temperatures were 7–20 K lower and the transition enthalpies ranged from 72 ± 29 to 236 ± 24 kJ mol−1. Agreement between the DSC and UV monitored melting (UVM) determined transition enthalpies validated analyzing the UVM transitions in terms of a two-state transition model. The transitions exhibited reversibility and were analyzed in terms of an AB = A + B two-state transition model which yielded van't Hoff enthalpies in agreement with the transition enthalpies. Extrapolation of the transition enthalpies and free energy changes to ambient temperatures yielded more negative values than those determined directly from isothermal titration calorimetry measurements on formation of the duplexes. This discrepancy was attributed to thermodynamic differences in the single-strand structures at ambient and at the transition temperatures, as indicated by UVM measurements on single DNA and PNA strands.
doi_str_mv 10.1093/nar/27.24.4801
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_148781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17448733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-e7c2da48f4f7c8e9a317a2c70466d351813b1eea3fa2a5795b46ae9ef6b975f33</originalsourceid><addsrcrecordid>eNqFkc1v00AQxVcIREPgyhFZHLg52U-v98AhaqBGigqHUlVcVmN7tt3i2GHXRs1_z0aJqsKF04w0v_f0dh8hbxldMGrEsoew5HrB5UKWlD0jMyYKnktT8OdkRgVVOaOyPCOvYrynlEmm5EtyxqjSnJVsRq6v7jBsocviCLXv_LjPBpd9u1wt15erDPo2W5_2dtp1-IAxq_dZ653DgP3oD8oG-t73t1kD3RD8Fsewf01eOOgivjnNOfn--dPVeZVvvl58OV9t8kZJPeaoG96CLJ10uinRgGAaeKOpLIpWqJRQ1AwRhAMOShtVywLQoCtqo5UTYk4-Hn13U73FtkmRAnR2l2JA2NsBvP370vs7ezv8tkyWOrnPyYeTPgy_Joyj3frYYNdBj8MUbWG4MUr-H2RaJkdxSPT-H_B-mEKfPsFySpWipSwTtDhCTRhiDOgeEzNqD73a1Kvl2nJpD70mwbun73yCH4tMQH4EfBzx4fEO4acttNDKVjc_bFVdrKub643diD_anK3o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200550848</pqid></control><display><type>article</type><title>Thermal stability of PNA/DNA and DNA/DNA duplexes by differential scanning calorimetry</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chakrabarti, Munna C. ; Schwarz, Frederick P.</creator><creatorcontrib>Chakrabarti, Munna C. ; Schwarz, Frederick P.</creatorcontrib><description>Thermodynamics of the thermal dissociation transitions of 10 bp PNA/DNA duplexes and their corresponding DNA/DNA duplexes in 10 mM sodium phosphate buffer (pH 7.0) were determined from differential scanning calorimetry (DSC) measurements. The PNA/DNA transition temperatures ranged from 329 to 343 K and the calorimetric transition enthalpies ranged from 209 ± 6 to 283 ± 37 kJ mol−1. The corresponding DNA/DNA transition temperatures were 7–20 K lower and the transition enthalpies ranged from 72 ± 29 to 236 ± 24 kJ mol−1. Agreement between the DSC and UV monitored melting (UVM) determined transition enthalpies validated analyzing the UVM transitions in terms of a two-state transition model. The transitions exhibited reversibility and were analyzed in terms of an AB = A + B two-state transition model which yielded van't Hoff enthalpies in agreement with the transition enthalpies. Extrapolation of the transition enthalpies and free energy changes to ambient temperatures yielded more negative values than those determined directly from isothermal titration calorimetry measurements on formation of the duplexes. This discrepancy was attributed to thermodynamic differences in the single-strand structures at ambient and at the transition temperatures, as indicated by UVM measurements on single DNA and PNA strands.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/27.24.4801</identifier><identifier>PMID: 10572181</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Base Sequence ; Calorimetry, Differential Scanning - methods ; DNA - chemistry ; Nucleic Acid Denaturation ; Oligodeoxyribonucleotides - chemistry ; Peptide Nucleic Acids - chemistry ; Thermodynamics</subject><ispartof>Nucleic acids research, 1999-12, Vol.27 (24), p.4801-4806</ispartof><rights>Copyright Oxford University Press(England) Dec 1, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-e7c2da48f4f7c8e9a317a2c70466d351813b1eea3fa2a5795b46ae9ef6b975f33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC148781/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC148781/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10572181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakrabarti, Munna C.</creatorcontrib><creatorcontrib>Schwarz, Frederick P.</creatorcontrib><title>Thermal stability of PNA/DNA and DNA/DNA duplexes by differential scanning calorimetry</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Research</addtitle><description>Thermodynamics of the thermal dissociation transitions of 10 bp PNA/DNA duplexes and their corresponding DNA/DNA duplexes in 10 mM sodium phosphate buffer (pH 7.0) were determined from differential scanning calorimetry (DSC) measurements. The PNA/DNA transition temperatures ranged from 329 to 343 K and the calorimetric transition enthalpies ranged from 209 ± 6 to 283 ± 37 kJ mol−1. The corresponding DNA/DNA transition temperatures were 7–20 K lower and the transition enthalpies ranged from 72 ± 29 to 236 ± 24 kJ mol−1. Agreement between the DSC and UV monitored melting (UVM) determined transition enthalpies validated analyzing the UVM transitions in terms of a two-state transition model. The transitions exhibited reversibility and were analyzed in terms of an AB = A + B two-state transition model which yielded van't Hoff enthalpies in agreement with the transition enthalpies. Extrapolation of the transition enthalpies and free energy changes to ambient temperatures yielded more negative values than those determined directly from isothermal titration calorimetry measurements on formation of the duplexes. This discrepancy was attributed to thermodynamic differences in the single-strand structures at ambient and at the transition temperatures, as indicated by UVM measurements on single DNA and PNA strands.</description><subject>Base Sequence</subject><subject>Calorimetry, Differential Scanning - methods</subject><subject>DNA - chemistry</subject><subject>Nucleic Acid Denaturation</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>Peptide Nucleic Acids - chemistry</subject><subject>Thermodynamics</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v00AQxVcIREPgyhFZHLg52U-v98AhaqBGigqHUlVcVmN7tt3i2GHXRs1_z0aJqsKF04w0v_f0dh8hbxldMGrEsoew5HrB5UKWlD0jMyYKnktT8OdkRgVVOaOyPCOvYrynlEmm5EtyxqjSnJVsRq6v7jBsocviCLXv_LjPBpd9u1wt15erDPo2W5_2dtp1-IAxq_dZ653DgP3oD8oG-t73t1kD3RD8Fsewf01eOOgivjnNOfn--dPVeZVvvl58OV9t8kZJPeaoG96CLJ10uinRgGAaeKOpLIpWqJRQ1AwRhAMOShtVywLQoCtqo5UTYk4-Hn13U73FtkmRAnR2l2JA2NsBvP370vs7ezv8tkyWOrnPyYeTPgy_Joyj3frYYNdBj8MUbWG4MUr-H2RaJkdxSPT-H_B-mEKfPsFySpWipSwTtDhCTRhiDOgeEzNqD73a1Kvl2nJpD70mwbun73yCH4tMQH4EfBzx4fEO4acttNDKVjc_bFVdrKub643diD_anK3o</recordid><startdate>19991215</startdate><enddate>19991215</enddate><creator>Chakrabarti, Munna C.</creator><creator>Schwarz, Frederick P.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991215</creationdate><title>Thermal stability of PNA/DNA and DNA/DNA duplexes by differential scanning calorimetry</title><author>Chakrabarti, Munna C. ; Schwarz, Frederick P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-e7c2da48f4f7c8e9a317a2c70466d351813b1eea3fa2a5795b46ae9ef6b975f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Base Sequence</topic><topic>Calorimetry, Differential Scanning - methods</topic><topic>DNA - chemistry</topic><topic>Nucleic Acid Denaturation</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>Peptide Nucleic Acids - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, Munna C.</creatorcontrib><creatorcontrib>Schwarz, Frederick P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, Munna C.</au><au>Schwarz, Frederick P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of PNA/DNA and DNA/DNA duplexes by differential scanning calorimetry</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Research</addtitle><date>1999-12-15</date><risdate>1999</risdate><volume>27</volume><issue>24</issue><spage>4801</spage><epage>4806</epage><pages>4801-4806</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Thermodynamics of the thermal dissociation transitions of 10 bp PNA/DNA duplexes and their corresponding DNA/DNA duplexes in 10 mM sodium phosphate buffer (pH 7.0) were determined from differential scanning calorimetry (DSC) measurements. The PNA/DNA transition temperatures ranged from 329 to 343 K and the calorimetric transition enthalpies ranged from 209 ± 6 to 283 ± 37 kJ mol−1. The corresponding DNA/DNA transition temperatures were 7–20 K lower and the transition enthalpies ranged from 72 ± 29 to 236 ± 24 kJ mol−1. Agreement between the DSC and UV monitored melting (UVM) determined transition enthalpies validated analyzing the UVM transitions in terms of a two-state transition model. The transitions exhibited reversibility and were analyzed in terms of an AB = A + B two-state transition model which yielded van't Hoff enthalpies in agreement with the transition enthalpies. Extrapolation of the transition enthalpies and free energy changes to ambient temperatures yielded more negative values than those determined directly from isothermal titration calorimetry measurements on formation of the duplexes. This discrepancy was attributed to thermodynamic differences in the single-strand structures at ambient and at the transition temperatures, as indicated by UVM measurements on single DNA and PNA strands.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>10572181</pmid><doi>10.1093/nar/27.24.4801</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 1999-12, Vol.27 (24), p.4801-4806
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_148781
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Base Sequence
Calorimetry, Differential Scanning - methods
DNA - chemistry
Nucleic Acid Denaturation
Oligodeoxyribonucleotides - chemistry
Peptide Nucleic Acids - chemistry
Thermodynamics
title Thermal stability of PNA/DNA and DNA/DNA duplexes by differential scanning calorimetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20PNA/DNA%20and%20DNA/DNA%20duplexes%20by%20differential%20scanning%20calorimetry&rft.jtitle=Nucleic%20acids%20research&rft.au=Chakrabarti,%20Munna%20C.&rft.date=1999-12-15&rft.volume=27&rft.issue=24&rft.spage=4801&rft.epage=4806&rft.pages=4801-4806&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/27.24.4801&rft_dat=%3Cproquest_pubme%3E17448733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200550848&rft_id=info:pmid/10572181&rfr_iscdi=true