Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites
Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 1999-11, Vol.27 (21), p.4298-4304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4304 |
---|---|
container_issue | 21 |
container_start_page | 4298 |
container_title | Nucleic acids research |
container_volume | 27 |
creator | Mobley, Evelyn M. Pan, Tao |
description | Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are ∼0.7 min−1 in 10 mM MgCI2 at 37°C, ∼4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate. |
doi_str_mv | 10.1093/nar/27.21.4298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_148707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70833192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-69d3dfbb3422d3eef581008c5ef37173b8181d3c48ac6d588a9080e565823a653</originalsourceid><addsrcrecordid>eNpdkc1v1DAUxC0EokvhyhFFHLhl-_wVOwcOqAWKVPFRgah6sZzYWVyy9uKXIJa_Hq-2Wgqnd5jfjOZpCHlKYUmh5SfR5hOmlowuBWv1PbKgvGG1aBt2nyyAg6wpCH1EHiHeAFBBpXhIjihIqhsmFmR75jGsYmWjqwKm0U4hxSoNVQ5d-r1d-xrnDqdsJ19tbMhYzRjiqrp8b9FXH-uuHHeAsepTnGyIO8SOk89F_BvQheh2CobJ42PyYLAj-ie395h8efP68-l5ffHh7bvTVxd1LyRMddM67oau44Ixx70fpKYAupd-4Ioq3mmqqeO90LZvnNTatqDBy0Zqxm0j-TF5uc_dzN3au97HUmY0mxzWNm9NssH8q8TwzazST0OFVqCK_8WtP6cfs8fJrAP2fhxt9GlGo0BzTltWwOf_gTdpzrH8ZhiAlMBbKNByD_U5IWY_HIpQMLtFTVnUMGUYNbtFi-HZ3fp38P2EBaj3QMDJ_zroNn83jeJKmvOrayP5p-by6vrMfOV_AIVzrqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200550390</pqid></control><display><type>article</type><title>Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mobley, Evelyn M. ; Pan, Tao</creator><creatorcontrib>Mobley, Evelyn M. ; Pan, Tao</creatorcontrib><description>Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are ∼0.7 min−1 in 10 mM MgCI2 at 37°C, ∼4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/27.21.4298</identifier><identifier>PMID: 10518624</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Base Sequence ; Binding Sites ; Catalysis ; Catalytic Domain ; Endoribonucleases - chemistry ; Endoribonucleases - genetics ; Endoribonucleases - metabolism ; Gene Library ; Kinetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Ribonuclease P ; Ribonuclease T1 - metabolism ; RNA - genetics ; RNA Precursors - chemistry ; RNA Precursors - genetics ; RNA Precursors - metabolism ; RNA, Catalytic - chemistry ; RNA, Catalytic - genetics ; RNA, Catalytic - metabolism ; RNA, Transfer - chemistry ; RNA, Transfer - metabolism ; RNA, Transfer, Phe - chemistry ; RNA, Transfer, Phe - genetics ; RNA, Transfer, Phe - metabolism ; Substrate Specificity ; Yeasts - genetics</subject><ispartof>Nucleic acids research, 1999-11, Vol.27 (21), p.4298-4304</ispartof><rights>Copyright Oxford University Press(England) Nov 1, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-69d3dfbb3422d3eef581008c5ef37173b8181d3c48ac6d588a9080e565823a653</citedby><cites>FETCH-LOGICAL-c450t-69d3dfbb3422d3eef581008c5ef37173b8181d3c48ac6d588a9080e565823a653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC148707/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC148707/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10518624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mobley, Evelyn M.</creatorcontrib><creatorcontrib>Pan, Tao</creatorcontrib><title>Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Research</addtitle><description>Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are ∼0.7 min−1 in 10 mM MgCI2 at 37°C, ∼4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate.</description><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Endoribonucleases - chemistry</subject><subject>Endoribonucleases - genetics</subject><subject>Endoribonucleases - metabolism</subject><subject>Gene Library</subject><subject>Kinetics</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Ribonuclease P</subject><subject>Ribonuclease T1 - metabolism</subject><subject>RNA - genetics</subject><subject>RNA Precursors - chemistry</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>RNA, Catalytic - chemistry</subject><subject>RNA, Catalytic - genetics</subject><subject>RNA, Catalytic - metabolism</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - metabolism</subject><subject>RNA, Transfer, Phe - chemistry</subject><subject>RNA, Transfer, Phe - genetics</subject><subject>RNA, Transfer, Phe - metabolism</subject><subject>Substrate Specificity</subject><subject>Yeasts - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAUxC0EokvhyhFFHLhl-_wVOwcOqAWKVPFRgah6sZzYWVyy9uKXIJa_Hq-2Wgqnd5jfjOZpCHlKYUmh5SfR5hOmlowuBWv1PbKgvGG1aBt2nyyAg6wpCH1EHiHeAFBBpXhIjihIqhsmFmR75jGsYmWjqwKm0U4hxSoNVQ5d-r1d-xrnDqdsJ19tbMhYzRjiqrp8b9FXH-uuHHeAsepTnGyIO8SOk89F_BvQheh2CobJ42PyYLAj-ie395h8efP68-l5ffHh7bvTVxd1LyRMddM67oau44Ixx70fpKYAupd-4Ioq3mmqqeO90LZvnNTatqDBy0Zqxm0j-TF5uc_dzN3au97HUmY0mxzWNm9NssH8q8TwzazST0OFVqCK_8WtP6cfs8fJrAP2fhxt9GlGo0BzTltWwOf_gTdpzrH8ZhiAlMBbKNByD_U5IWY_HIpQMLtFTVnUMGUYNbtFi-HZ3fp38P2EBaj3QMDJ_zroNn83jeJKmvOrayP5p-by6vrMfOV_AIVzrqY</recordid><startdate>199911</startdate><enddate>199911</enddate><creator>Mobley, Evelyn M.</creator><creator>Pan, Tao</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199911</creationdate><title>Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites</title><author>Mobley, Evelyn M. ; Pan, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-69d3dfbb3422d3eef581008c5ef37173b8181d3c48ac6d588a9080e565823a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Endoribonucleases - chemistry</topic><topic>Endoribonucleases - genetics</topic><topic>Endoribonucleases - metabolism</topic><topic>Gene Library</topic><topic>Kinetics</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Ribonuclease P</topic><topic>Ribonuclease T1 - metabolism</topic><topic>RNA - genetics</topic><topic>RNA Precursors - chemistry</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>RNA, Catalytic - chemistry</topic><topic>RNA, Catalytic - genetics</topic><topic>RNA, Catalytic - metabolism</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - metabolism</topic><topic>RNA, Transfer, Phe - chemistry</topic><topic>RNA, Transfer, Phe - genetics</topic><topic>RNA, Transfer, Phe - metabolism</topic><topic>Substrate Specificity</topic><topic>Yeasts - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mobley, Evelyn M.</creatorcontrib><creatorcontrib>Pan, Tao</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mobley, Evelyn M.</au><au>Pan, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Research</addtitle><date>1999-11</date><risdate>1999</risdate><volume>27</volume><issue>21</issue><spage>4298</spage><epage>4304</epage><pages>4298-4304</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are ∼0.7 min−1 in 10 mM MgCI2 at 37°C, ∼4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>10518624</pmid><doi>10.1093/nar/27.21.4298</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 1999-11, Vol.27 (21), p.4298-4304 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_148707 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bacillus subtilis - enzymology Bacillus subtilis - genetics Base Sequence Binding Sites Catalysis Catalytic Domain Endoribonucleases - chemistry Endoribonucleases - genetics Endoribonucleases - metabolism Gene Library Kinetics Molecular Sequence Data Nucleic Acid Conformation Ribonuclease P Ribonuclease T1 - metabolism RNA - genetics RNA Precursors - chemistry RNA Precursors - genetics RNA Precursors - metabolism RNA, Catalytic - chemistry RNA, Catalytic - genetics RNA, Catalytic - metabolism RNA, Transfer - chemistry RNA, Transfer - metabolism RNA, Transfer, Phe - chemistry RNA, Transfer, Phe - genetics RNA, Transfer, Phe - metabolism Substrate Specificity Yeasts - genetics |
title | Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20isolation%20of%20ribozyme-substrate%20pairs%20using%20RNase%20P-based%20ribozymes%20containing%20altered%20substrate%20binding%20sites&rft.jtitle=Nucleic%20acids%20research&rft.au=Mobley,%20Evelyn%20M.&rft.date=1999-11&rft.volume=27&rft.issue=21&rft.spage=4298&rft.epage=4304&rft.pages=4298-4304&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/27.21.4298&rft_dat=%3Cproquest_pubme%3E70833192%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200550390&rft_id=info:pmid/10518624&rfr_iscdi=true |