RPA subunit arrangement near the 3′-end of the primer is modulated by the length of the template strand and cooperative protein interactions

To analyze the interaction of human replication protein A (RPA) and its subunits with the DNA template-primer junction in the DNA replication fork, we designed several template-primer systems differing in the size of the single-stranded template tail (4, 9, 13, 14,19 and 31 nt). Base substituted pho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 1999-11, Vol.27 (21), p.4235-4240
Hauptverfasser: Lavrik, Olga I., Kolpashchikov, Dmitry M., Weisshart, Klaus, Nasheuer, Heinz-Peter, Khodyreva, Svetlana N., Favre, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4240
container_issue 21
container_start_page 4235
container_title Nucleic acids research
container_volume 27
creator Lavrik, Olga I.
Kolpashchikov, Dmitry M.
Weisshart, Klaus
Nasheuer, Heinz-Peter
Khodyreva, Svetlana N.
Favre, Alain
description To analyze the interaction of human replication protein A (RPA) and its subunits with the DNA template-primer junction in the DNA replication fork, we designed several template-primer systems differing in the size of the single-stranded template tail (4, 9, 13, 14,19 and 31 nt). Base substituted photoreactive dNTP analogs—5-[N-(2-nitro-5-azidobenzoyl)-frans-3-amino-propenyl-1]-2′-deoxyuridine-5′-triphosphate (NAB-4-dUTP) and 5-[N-[N-(2-nitro-5-azidobenzoyl)glycyl]-trans-3-aminopropenyl-1]-2′-deoxyuridine-5′-triphos-phate (NAB-7-dUTP)—were used as substrates for elongation of radiolabeled primer-template by DNA polymerases in the presence or absence of RPA. Subsequent UV crosslinking showed that the pattern of p32 and p70 RPA subunit labeling, and consequently their interaction with the template-primer junction, is strongly dependent on the template extension length at a particular RPA concentration, as well as on the ratio of RPA to template concentration. Our results suggest a model of changes in the RPA configuration modulating by the length of the template extension in the course of nascent DNA synthesis.
doi_str_mv 10.1093/nar/27.21.4235
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_148699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>374168951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-6b99fa3bfce55a7ef2cdb40bb0f113305b43c571e205408135b62b3c24d5079b3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEokNhyxJZLNhl6t84WbCoKmCQBoEqfio2lp3czLgk9mA7Fd3xBDwMj8ST4HRKVdiwsCz7fPfIxzpF8ZjgJcENO3I6HFG5pGTJKRN3igVhFS15U9G7xQIzLEqCeX1QPIjxHGPCieD3iwOCBakrUi2KH6fvjlGczORsQjoE7TYwgkvIgQ4obQGxX99_luA65Pur8y7YEQKyEY2-mwadoEPm8koawG3S9g-YYNzNMoop23ZoXq33Owg62YvZyCewDlmX8lWbrHfxYXGv10OER9f7YfHh5Yv3J6ty_fbV65PjddkKLlNZmabpNTN9C0JoCT1tO8OxMbgnhOXUhrNWSAIUC45rwoSpqGEt5Z3AsjHssHi-991NZoSuzYmDHtScTYdL5bVVfyvObtXGXyjC66pp8vyz6_ngv04QkxptbGEYtAM_RSVxzWsm5H9BIjmuGkoy-PQf8NxPweVPUBRjkWPXLEPLPdQGH2OA_ubFBKu5Dyr3QVGpKFFzH_LAk9s5b-H7AmSg3AM2Jvh2o-vwRVWSSaFWZ5_VWfNx_WZVf1Kn7Dc-OMQ6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200554783</pqid></control><display><type>article</type><title>RPA subunit arrangement near the 3′-end of the primer is modulated by the length of the template strand and cooperative protein interactions</title><source>MEDLINE</source><source>Oxford University Press Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lavrik, Olga I. ; Kolpashchikov, Dmitry M. ; Weisshart, Klaus ; Nasheuer, Heinz-Peter ; Khodyreva, Svetlana N. ; Favre, Alain</creator><creatorcontrib>Lavrik, Olga I. ; Kolpashchikov, Dmitry M. ; Weisshart, Klaus ; Nasheuer, Heinz-Peter ; Khodyreva, Svetlana N. ; Favre, Alain</creatorcontrib><description>To analyze the interaction of human replication protein A (RPA) and its subunits with the DNA template-primer junction in the DNA replication fork, we designed several template-primer systems differing in the size of the single-stranded template tail (4, 9, 13, 14,19 and 31 nt). Base substituted photoreactive dNTP analogs—5-[N-(2-nitro-5-azidobenzoyl)-frans-3-amino-propenyl-1]-2′-deoxyuridine-5′-triphosphate (NAB-4-dUTP) and 5-[N-[N-(2-nitro-5-azidobenzoyl)glycyl]-trans-3-aminopropenyl-1]-2′-deoxyuridine-5′-triphos-phate (NAB-7-dUTP)—were used as substrates for elongation of radiolabeled primer-template by DNA polymerases in the presence or absence of RPA. Subsequent UV crosslinking showed that the pattern of p32 and p70 RPA subunit labeling, and consequently their interaction with the template-primer junction, is strongly dependent on the template extension length at a particular RPA concentration, as well as on the ratio of RPA to template concentration. Our results suggest a model of changes in the RPA configuration modulating by the length of the template extension in the course of nascent DNA synthesis.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/27.21.4235</identifier><identifier>PMID: 10518616</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Azides - chemistry ; Azides - metabolism ; Cross-Linking Reagents - chemistry ; Cross-Linking Reagents - metabolism ; DNA - biosynthesis ; DNA Helicases - chemistry ; DNA Helicases - metabolism ; DNA Polymerase beta - metabolism ; DNA Polymerase I - metabolism ; DNA Primers - genetics ; DNA Primers - metabolism ; DNA Replication - genetics ; DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - genetics ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Escherichia coli - enzymology ; Humans ; Models, Biological ; Molecular Weight ; p32 protein ; p70 protein ; Protein Binding ; Protein Conformation ; Replication Protein A ; Templates, Genetic ; Ultraviolet Rays ; Uridine Triphosphate - analogs &amp; derivatives ; Uridine Triphosphate - chemistry ; Uridine Triphosphate - metabolism</subject><ispartof>Nucleic acids research, 1999-11, Vol.27 (21), p.4235-4240</ispartof><rights>Copyright Oxford University Press(England) Nov 1, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-6b99fa3bfce55a7ef2cdb40bb0f113305b43c571e205408135b62b3c24d5079b3</citedby><cites>FETCH-LOGICAL-c547t-6b99fa3bfce55a7ef2cdb40bb0f113305b43c571e205408135b62b3c24d5079b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC148699/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC148699/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10518616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lavrik, Olga I.</creatorcontrib><creatorcontrib>Kolpashchikov, Dmitry M.</creatorcontrib><creatorcontrib>Weisshart, Klaus</creatorcontrib><creatorcontrib>Nasheuer, Heinz-Peter</creatorcontrib><creatorcontrib>Khodyreva, Svetlana N.</creatorcontrib><creatorcontrib>Favre, Alain</creatorcontrib><title>RPA subunit arrangement near the 3′-end of the primer is modulated by the length of the template strand and cooperative protein interactions</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Research</addtitle><description>To analyze the interaction of human replication protein A (RPA) and its subunits with the DNA template-primer junction in the DNA replication fork, we designed several template-primer systems differing in the size of the single-stranded template tail (4, 9, 13, 14,19 and 31 nt). Base substituted photoreactive dNTP analogs—5-[N-(2-nitro-5-azidobenzoyl)-frans-3-amino-propenyl-1]-2′-deoxyuridine-5′-triphosphate (NAB-4-dUTP) and 5-[N-[N-(2-nitro-5-azidobenzoyl)glycyl]-trans-3-aminopropenyl-1]-2′-deoxyuridine-5′-triphos-phate (NAB-7-dUTP)—were used as substrates for elongation of radiolabeled primer-template by DNA polymerases in the presence or absence of RPA. Subsequent UV crosslinking showed that the pattern of p32 and p70 RPA subunit labeling, and consequently their interaction with the template-primer junction, is strongly dependent on the template extension length at a particular RPA concentration, as well as on the ratio of RPA to template concentration. Our results suggest a model of changes in the RPA configuration modulating by the length of the template extension in the course of nascent DNA synthesis.</description><subject>Azides - chemistry</subject><subject>Azides - metabolism</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Cross-Linking Reagents - metabolism</subject><subject>DNA - biosynthesis</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA Polymerase I - metabolism</subject><subject>DNA Primers - genetics</subject><subject>DNA Primers - metabolism</subject><subject>DNA Replication - genetics</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - genetics</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Escherichia coli - enzymology</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Molecular Weight</subject><subject>p32 protein</subject><subject>p70 protein</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Replication Protein A</subject><subject>Templates, Genetic</subject><subject>Ultraviolet Rays</subject><subject>Uridine Triphosphate - analogs &amp; derivatives</subject><subject>Uridine Triphosphate - chemistry</subject><subject>Uridine Triphosphate - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhSMEokNhyxJZLNhl6t84WbCoKmCQBoEqfio2lp3czLgk9mA7Fd3xBDwMj8ST4HRKVdiwsCz7fPfIxzpF8ZjgJcENO3I6HFG5pGTJKRN3igVhFS15U9G7xQIzLEqCeX1QPIjxHGPCieD3iwOCBakrUi2KH6fvjlGczORsQjoE7TYwgkvIgQ4obQGxX99_luA65Pur8y7YEQKyEY2-mwadoEPm8koawG3S9g-YYNzNMoop23ZoXq33Owg62YvZyCewDlmX8lWbrHfxYXGv10OER9f7YfHh5Yv3J6ty_fbV65PjddkKLlNZmabpNTN9C0JoCT1tO8OxMbgnhOXUhrNWSAIUC45rwoSpqGEt5Z3AsjHssHi-991NZoSuzYmDHtScTYdL5bVVfyvObtXGXyjC66pp8vyz6_ngv04QkxptbGEYtAM_RSVxzWsm5H9BIjmuGkoy-PQf8NxPweVPUBRjkWPXLEPLPdQGH2OA_ubFBKu5Dyr3QVGpKFFzH_LAk9s5b-H7AmSg3AM2Jvh2o-vwRVWSSaFWZ5_VWfNx_WZVf1Kn7Dc-OMQ6</recordid><startdate>199911</startdate><enddate>199911</enddate><creator>Lavrik, Olga I.</creator><creator>Kolpashchikov, Dmitry M.</creator><creator>Weisshart, Klaus</creator><creator>Nasheuer, Heinz-Peter</creator><creator>Khodyreva, Svetlana N.</creator><creator>Favre, Alain</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199911</creationdate><title>RPA subunit arrangement near the 3′-end of the primer is modulated by the length of the template strand and cooperative protein interactions</title><author>Lavrik, Olga I. ; Kolpashchikov, Dmitry M. ; Weisshart, Klaus ; Nasheuer, Heinz-Peter ; Khodyreva, Svetlana N. ; Favre, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-6b99fa3bfce55a7ef2cdb40bb0f113305b43c571e205408135b62b3c24d5079b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Azides - chemistry</topic><topic>Azides - metabolism</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Cross-Linking Reagents - metabolism</topic><topic>DNA - biosynthesis</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA Polymerase I - metabolism</topic><topic>DNA Primers - genetics</topic><topic>DNA Primers - metabolism</topic><topic>DNA Replication - genetics</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - genetics</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Escherichia coli - enzymology</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Molecular Weight</topic><topic>p32 protein</topic><topic>p70 protein</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Replication Protein A</topic><topic>Templates, Genetic</topic><topic>Ultraviolet Rays</topic><topic>Uridine Triphosphate - analogs &amp; derivatives</topic><topic>Uridine Triphosphate - chemistry</topic><topic>Uridine Triphosphate - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavrik, Olga I.</creatorcontrib><creatorcontrib>Kolpashchikov, Dmitry M.</creatorcontrib><creatorcontrib>Weisshart, Klaus</creatorcontrib><creatorcontrib>Nasheuer, Heinz-Peter</creatorcontrib><creatorcontrib>Khodyreva, Svetlana N.</creatorcontrib><creatorcontrib>Favre, Alain</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavrik, Olga I.</au><au>Kolpashchikov, Dmitry M.</au><au>Weisshart, Klaus</au><au>Nasheuer, Heinz-Peter</au><au>Khodyreva, Svetlana N.</au><au>Favre, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RPA subunit arrangement near the 3′-end of the primer is modulated by the length of the template strand and cooperative protein interactions</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Research</addtitle><date>1999-11</date><risdate>1999</risdate><volume>27</volume><issue>21</issue><spage>4235</spage><epage>4240</epage><pages>4235-4240</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>To analyze the interaction of human replication protein A (RPA) and its subunits with the DNA template-primer junction in the DNA replication fork, we designed several template-primer systems differing in the size of the single-stranded template tail (4, 9, 13, 14,19 and 31 nt). Base substituted photoreactive dNTP analogs—5-[N-(2-nitro-5-azidobenzoyl)-frans-3-amino-propenyl-1]-2′-deoxyuridine-5′-triphosphate (NAB-4-dUTP) and 5-[N-[N-(2-nitro-5-azidobenzoyl)glycyl]-trans-3-aminopropenyl-1]-2′-deoxyuridine-5′-triphos-phate (NAB-7-dUTP)—were used as substrates for elongation of radiolabeled primer-template by DNA polymerases in the presence or absence of RPA. Subsequent UV crosslinking showed that the pattern of p32 and p70 RPA subunit labeling, and consequently their interaction with the template-primer junction, is strongly dependent on the template extension length at a particular RPA concentration, as well as on the ratio of RPA to template concentration. Our results suggest a model of changes in the RPA configuration modulating by the length of the template extension in the course of nascent DNA synthesis.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>10518616</pmid><doi>10.1093/nar/27.21.4235</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 1999-11, Vol.27 (21), p.4235-4240
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_148699
source MEDLINE; Oxford University Press Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Azides - chemistry
Azides - metabolism
Cross-Linking Reagents - chemistry
Cross-Linking Reagents - metabolism
DNA - biosynthesis
DNA Helicases - chemistry
DNA Helicases - metabolism
DNA Polymerase beta - metabolism
DNA Polymerase I - metabolism
DNA Primers - genetics
DNA Primers - metabolism
DNA Replication - genetics
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - genetics
DNA, Single-Stranded - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
Escherichia coli - enzymology
Humans
Models, Biological
Molecular Weight
p32 protein
p70 protein
Protein Binding
Protein Conformation
Replication Protein A
Templates, Genetic
Ultraviolet Rays
Uridine Triphosphate - analogs & derivatives
Uridine Triphosphate - chemistry
Uridine Triphosphate - metabolism
title RPA subunit arrangement near the 3′-end of the primer is modulated by the length of the template strand and cooperative protein interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RPA%20subunit%20arrangement%20near%20the%203%E2%80%B2-end%20of%20the%20primer%20is%20modulated%20by%20the%20length%20of%20the%20template%20strand%20and%20cooperative%20protein%20interactions&rft.jtitle=Nucleic%20acids%20research&rft.au=Lavrik,%20Olga%20I.&rft.date=1999-11&rft.volume=27&rft.issue=21&rft.spage=4235&rft.epage=4240&rft.pages=4235-4240&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/27.21.4235&rft_dat=%3Cproquest_pubme%3E374168951%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200554783&rft_id=info:pmid/10518616&rfr_iscdi=true