Deformation of the Diastolic Left Ventricle: I. Nonlinear Elastic Effects

A linear incremental finite element model is used to analyze the mechanical behavior of the left ventricle. The ventricle is treated as a heterogeneous, non-linearly elastic, isotropic, thick-walled solid of revolution. A new triaxial constitutive relation for the myocardium is presented which exhib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1973-07, Vol.13 (7), p.689-704
Hauptverfasser: Janz, Ronald F., Grimm, Arthur F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 7
container_start_page 689
container_title Biophysical journal
container_volume 13
creator Janz, Ronald F.
Grimm, Arthur F.
description A linear incremental finite element model is used to analyze the mechanical behavior of the left ventricle. The ventricle is treated as a heterogeneous, non-linearly elastic, isotropic, thick-walled solid of revolution. A new triaxial constitutive relation for the myocardium is presented which exhibits the observed exponential length-passive tension behavior of left ventricular papillary muscle in the limit of uniaxial tension. This triaxial relation contains three parameters: ( a ) a “small strain” Young's modulus, ( b ) a Poisson's ratio, and ( c ) a parameter which characterizes the nonlinear aspect of the elastic behavior of heart muscle. The inner third and outer two-thirds of the ventricular wall are assumed to have small strain Young's moduli of 30 and 60 g/cm 2 , respectively. The Poisson's ratio is assumed to be equal to 0.49 throughout the ventricular wall. In general, the results of this study indicate that while a linearly elastic model for the ventricle may be adequate in terms of predicting pressure-volume relationships, a linear model may have serious limitations with regard to predicting fiber elongation within the ventricular wall. For example, volumes and midwall equatorial circumferential strains predicted by the linear and nonlinear models considered in this study differ by approximately 20 and 90%, respectively, at a transmural pressure of 12 cm H 2 O.
doi_str_mv 10.1016/S0006-3495(73)86015-1
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1484325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_1484325</sourcerecordid><originalsourceid>FETCH-LOGICAL-p123t-1fc6f517c5b6e4b48195cab2c30e83d0b04f8f956e741d77baa6c97e7cdf53f53</originalsourceid><addsrcrecordid>eNpVjUtLxDAUhYMoYx39CUKXikTvbZ7dCDLjCwoufGxLmiZOpG1KGwf89yqKIBw4i-_wHUKOEc4RUF48AoCkjJfiRLFTLQEFxR2SoeAFBdByl2R_k31yMM9vAFgIwAVZcIVCaJ6Rs7XzcepNCnHIo8_TxuXrYOYUu2DzyvmUv7ghTcF27pDsedPN7ui3l-T55vppdUerh9v71VVFRyxYouit9AKVFY10vOEaS2FNU1gGTrMWGuBe-1JIpzi2SjXGSFsqp2zrBfvKklz-eMf3pnet_f43XT1OoTfTRx1NqP-TIWzq17itkWvOCsE-AZjiUZY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deformation of the Diastolic Left Ventricle: I. Nonlinear Elastic Effects</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Janz, Ronald F. ; Grimm, Arthur F.</creator><creatorcontrib>Janz, Ronald F. ; Grimm, Arthur F.</creatorcontrib><description>A linear incremental finite element model is used to analyze the mechanical behavior of the left ventricle. The ventricle is treated as a heterogeneous, non-linearly elastic, isotropic, thick-walled solid of revolution. A new triaxial constitutive relation for the myocardium is presented which exhibits the observed exponential length-passive tension behavior of left ventricular papillary muscle in the limit of uniaxial tension. This triaxial relation contains three parameters: ( a ) a “small strain” Young's modulus, ( b ) a Poisson's ratio, and ( c ) a parameter which characterizes the nonlinear aspect of the elastic behavior of heart muscle. The inner third and outer two-thirds of the ventricular wall are assumed to have small strain Young's moduli of 30 and 60 g/cm 2 , respectively. The Poisson's ratio is assumed to be equal to 0.49 throughout the ventricular wall. In general, the results of this study indicate that while a linearly elastic model for the ventricle may be adequate in terms of predicting pressure-volume relationships, a linear model may have serious limitations with regard to predicting fiber elongation within the ventricular wall. For example, volumes and midwall equatorial circumferential strains predicted by the linear and nonlinear models considered in this study differ by approximately 20 and 90%, respectively, at a transmural pressure of 12 cm H 2 O.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(73)86015-1</identifier><identifier>PMID: 4715584</identifier><language>eng</language><ispartof>Biophysical journal, 1973-07, Vol.13 (7), p.689-704</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1484325/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1484325/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Janz, Ronald F.</creatorcontrib><creatorcontrib>Grimm, Arthur F.</creatorcontrib><title>Deformation of the Diastolic Left Ventricle: I. Nonlinear Elastic Effects</title><title>Biophysical journal</title><description>A linear incremental finite element model is used to analyze the mechanical behavior of the left ventricle. The ventricle is treated as a heterogeneous, non-linearly elastic, isotropic, thick-walled solid of revolution. A new triaxial constitutive relation for the myocardium is presented which exhibits the observed exponential length-passive tension behavior of left ventricular papillary muscle in the limit of uniaxial tension. This triaxial relation contains three parameters: ( a ) a “small strain” Young's modulus, ( b ) a Poisson's ratio, and ( c ) a parameter which characterizes the nonlinear aspect of the elastic behavior of heart muscle. The inner third and outer two-thirds of the ventricular wall are assumed to have small strain Young's moduli of 30 and 60 g/cm 2 , respectively. The Poisson's ratio is assumed to be equal to 0.49 throughout the ventricular wall. In general, the results of this study indicate that while a linearly elastic model for the ventricle may be adequate in terms of predicting pressure-volume relationships, a linear model may have serious limitations with regard to predicting fiber elongation within the ventricular wall. For example, volumes and midwall equatorial circumferential strains predicted by the linear and nonlinear models considered in this study differ by approximately 20 and 90%, respectively, at a transmural pressure of 12 cm H 2 O.</description><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNpVjUtLxDAUhYMoYx39CUKXikTvbZ7dCDLjCwoufGxLmiZOpG1KGwf89yqKIBw4i-_wHUKOEc4RUF48AoCkjJfiRLFTLQEFxR2SoeAFBdByl2R_k31yMM9vAFgIwAVZcIVCaJ6Rs7XzcepNCnHIo8_TxuXrYOYUu2DzyvmUv7ghTcF27pDsedPN7ui3l-T55vppdUerh9v71VVFRyxYouit9AKVFY10vOEaS2FNU1gGTrMWGuBe-1JIpzi2SjXGSFsqp2zrBfvKklz-eMf3pnet_f43XT1OoTfTRx1NqP-TIWzq17itkWvOCsE-AZjiUZY</recordid><startdate>19730701</startdate><enddate>19730701</enddate><creator>Janz, Ronald F.</creator><creator>Grimm, Arthur F.</creator><scope>5PM</scope></search><sort><creationdate>19730701</creationdate><title>Deformation of the Diastolic Left Ventricle</title><author>Janz, Ronald F. ; Grimm, Arthur F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p123t-1fc6f517c5b6e4b48195cab2c30e83d0b04f8f956e741d77baa6c97e7cdf53f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janz, Ronald F.</creatorcontrib><creatorcontrib>Grimm, Arthur F.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janz, Ronald F.</au><au>Grimm, Arthur F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation of the Diastolic Left Ventricle: I. Nonlinear Elastic Effects</atitle><jtitle>Biophysical journal</jtitle><date>1973-07-01</date><risdate>1973</risdate><volume>13</volume><issue>7</issue><spage>689</spage><epage>704</epage><pages>689-704</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>A linear incremental finite element model is used to analyze the mechanical behavior of the left ventricle. The ventricle is treated as a heterogeneous, non-linearly elastic, isotropic, thick-walled solid of revolution. A new triaxial constitutive relation for the myocardium is presented which exhibits the observed exponential length-passive tension behavior of left ventricular papillary muscle in the limit of uniaxial tension. This triaxial relation contains three parameters: ( a ) a “small strain” Young's modulus, ( b ) a Poisson's ratio, and ( c ) a parameter which characterizes the nonlinear aspect of the elastic behavior of heart muscle. The inner third and outer two-thirds of the ventricular wall are assumed to have small strain Young's moduli of 30 and 60 g/cm 2 , respectively. The Poisson's ratio is assumed to be equal to 0.49 throughout the ventricular wall. In general, the results of this study indicate that while a linearly elastic model for the ventricle may be adequate in terms of predicting pressure-volume relationships, a linear model may have serious limitations with regard to predicting fiber elongation within the ventricular wall. For example, volumes and midwall equatorial circumferential strains predicted by the linear and nonlinear models considered in this study differ by approximately 20 and 90%, respectively, at a transmural pressure of 12 cm H 2 O.</abstract><pmid>4715584</pmid><doi>10.1016/S0006-3495(73)86015-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1973-07, Vol.13 (7), p.689-704
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1484325
source Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Deformation of the Diastolic Left Ventricle: I. Nonlinear Elastic Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20of%20the%20Diastolic%20Left%20Ventricle:%20I.%20Nonlinear%20Elastic%20Effects&rft.jtitle=Biophysical%20journal&rft.au=Janz,%20Ronald%20F.&rft.date=1973-07-01&rft.volume=13&rft.issue=7&rft.spage=689&rft.epage=704&rft.pages=689-704&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(73)86015-1&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_1484325%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/4715584&rfr_iscdi=true