The presence of pseudouridine in the anticodon alters the genetic code: A possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria
It has been inferred from DNA sequence analyses that in echinoderm mitochondria not only the usual asparagine codons AAU and AAC, but also the usual lysine codon AAA, are translated as asparagine by a single mitochondrial (mt) tRNAAsn with the anticodon GUU. Nucleotide sequencing of starfish mt tRNA...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 1999-04, Vol.27 (7), p.1683-1689 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1689 |
---|---|
container_issue | 7 |
container_start_page | 1683 |
container_title | Nucleic acids research |
container_volume | 27 |
creator | Tomita, Kozo Ueda, Takuya Watanabe, Kimitsuna |
description | It has been inferred from DNA sequence analyses that in echinoderm mitochondria not only the usual asparagine codons AAU and AAC, but also the usual lysine codon AAA, are translated as asparagine by a single mitochondrial (mt) tRNAAsn with the anticodon GUU. Nucleotide sequencing of starfish mt tRNAAsn revealed that the anticodon is GΨU, U35 at the anticodon second position being modified to pseudouridine (Ψ). In contrast, mt tRNALys, corresponding to another lysine codon, AAG, has the anticodon CUU. mt tRNAs possessing anti-codons closely related to that of tRNAAsn, but responsible for decoding only two codons each—tRNAHis, tRNAAsp and tRNATyr—were found to possess unmodified U35 in all cases, suggesting the importance of Ψ35 for decoding the three codons. Therefore, the decoding capabilities of two synthetic Escherichia coli tRNAAla variants with the anticodon GΨU or GUU were examined using an E.coli in vitro translation system. Both tRNAs could translate not only AAC and AAU with similar efficiency, but also AAA with an efficiency that was ∼2-fold higher in the case of tRNAAlaGΨU than tRNAAlaGUU. These findings imply that Ψ35 of echinoderm mt tRNAAsn actually serves to decode the unusual asparagine codon AAA, resulting in the alteration of the genetic code in echinoderm mitochondria. |
doi_str_mv | 10.1093/nar/27.7.1683 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_148372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17291842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-abf4996027ccee0032a37f12376f4cac56171370252627eb4f25c886535696ca3</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhhtR3HH16FWCB289W_nuETwMizrCgogripeQyVTPZO1OepMecf-TP9K0M6yrFyEQqHrrqUrqraqnFOYUFvws2HTG9FzPqWr4vWpGuWK1WCh2v5oBB1lTEM1J9SjnKwAqqBQPqxMKoBUAzKqflzskQ8KMwSGJLRky7jdxn_zGByQ-kLEIbBi9i5sYiO1GTPl3cIsBS5iUBL4kSzLEnP26Q9Kj29ngc0_amIgt0W3oMYwTfipcLpeku8kT_wjN5Qw22e2xZwH4ULCpJ70fo9vFsEnePq4etLbL-OR4n1af3ry-PF_VF-_fvjtfXtROCjHWdt2KxUIB084hAnBmuW4p41q1wlknFdWUa2CSKaZxLVomXdMoyaVaKGf5afXqwB326x43rsyebGeG5Hubbky03vydCX5ntvG7oaLhmpX6F8f6FK_3mEfT--yw62zAuM-mdGEgywz_E1LNFrQRE_H5P8KrsqNQPsEwACmZZqKI6oPIpbKKhO3txBTMZBZTzGKYNtpMZin6Z3efeUd9cMcfoM8j_rjN2_TNKM21NKsvXw18-LwS8FEZyX8Bh1XMow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200552724</pqid></control><display><type>article</type><title>The presence of pseudouridine in the anticodon alters the genetic code: A possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tomita, Kozo ; Ueda, Takuya ; Watanabe, Kimitsuna</creator><creatorcontrib>Tomita, Kozo ; Ueda, Takuya ; Watanabe, Kimitsuna</creatorcontrib><description>It has been inferred from DNA sequence analyses that in echinoderm mitochondria not only the usual asparagine codons AAU and AAC, but also the usual lysine codon AAA, are translated as asparagine by a single mitochondrial (mt) tRNAAsn with the anticodon GUU. Nucleotide sequencing of starfish mt tRNAAsn revealed that the anticodon is GΨU, U35 at the anticodon second position being modified to pseudouridine (Ψ). In contrast, mt tRNALys, corresponding to another lysine codon, AAG, has the anticodon CUU. mt tRNAs possessing anti-codons closely related to that of tRNAAsn, but responsible for decoding only two codons each—tRNAHis, tRNAAsp and tRNATyr—were found to possess unmodified U35 in all cases, suggesting the importance of Ψ35 for decoding the three codons. Therefore, the decoding capabilities of two synthetic Escherichia coli tRNAAla variants with the anticodon GΨU or GUU were examined using an E.coli in vitro translation system. Both tRNAs could translate not only AAC and AAU with similar efficiency, but also AAA with an efficiency that was ∼2-fold higher in the case of tRNAAlaGΨU than tRNAAlaGUU. These findings imply that Ψ35 of echinoderm mt tRNAAsn actually serves to decode the unusual asparagine codon AAA, resulting in the alteration of the genetic code in echinoderm mitochondria.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/27.7.1683</identifier><identifier>PMID: 10076000</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Substitution ; Animals ; Anticodon ; Asparagine - genetics ; Base Sequence ; Echinodermata ; Echinodermata - genetics ; Escherichia coli ; Genetic Code ; Lysine - genetics ; Marine ; Mitochondria - metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Pseudouridine - genetics ; RNA, Transfer - chemistry ; RNA, Transfer - genetics</subject><ispartof>Nucleic acids research, 1999-04, Vol.27 (7), p.1683-1689</ispartof><rights>Copyright Oxford University Press(England) Apr 01, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-abf4996027ccee0032a37f12376f4cac56171370252627eb4f25c886535696ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC148372/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC148372/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10076000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomita, Kozo</creatorcontrib><creatorcontrib>Ueda, Takuya</creatorcontrib><creatorcontrib>Watanabe, Kimitsuna</creatorcontrib><title>The presence of pseudouridine in the anticodon alters the genetic code: A possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Research</addtitle><description>It has been inferred from DNA sequence analyses that in echinoderm mitochondria not only the usual asparagine codons AAU and AAC, but also the usual lysine codon AAA, are translated as asparagine by a single mitochondrial (mt) tRNAAsn with the anticodon GUU. Nucleotide sequencing of starfish mt tRNAAsn revealed that the anticodon is GΨU, U35 at the anticodon second position being modified to pseudouridine (Ψ). In contrast, mt tRNALys, corresponding to another lysine codon, AAG, has the anticodon CUU. mt tRNAs possessing anti-codons closely related to that of tRNAAsn, but responsible for decoding only two codons each—tRNAHis, tRNAAsp and tRNATyr—were found to possess unmodified U35 in all cases, suggesting the importance of Ψ35 for decoding the three codons. Therefore, the decoding capabilities of two synthetic Escherichia coli tRNAAla variants with the anticodon GΨU or GUU were examined using an E.coli in vitro translation system. Both tRNAs could translate not only AAC and AAU with similar efficiency, but also AAA with an efficiency that was ∼2-fold higher in the case of tRNAAlaGΨU than tRNAAlaGUU. These findings imply that Ψ35 of echinoderm mt tRNAAsn actually serves to decode the unusual asparagine codon AAA, resulting in the alteration of the genetic code in echinoderm mitochondria.</description><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Anticodon</subject><subject>Asparagine - genetics</subject><subject>Base Sequence</subject><subject>Echinodermata</subject><subject>Echinodermata - genetics</subject><subject>Escherichia coli</subject><subject>Genetic Code</subject><subject>Lysine - genetics</subject><subject>Marine</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Biosynthesis</subject><subject>Pseudouridine - genetics</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2LFDEQhhtR3HH16FWCB289W_nuETwMizrCgogripeQyVTPZO1OepMecf-TP9K0M6yrFyEQqHrrqUrqraqnFOYUFvws2HTG9FzPqWr4vWpGuWK1WCh2v5oBB1lTEM1J9SjnKwAqqBQPqxMKoBUAzKqflzskQ8KMwSGJLRky7jdxn_zGByQ-kLEIbBi9i5sYiO1GTPl3cIsBS5iUBL4kSzLEnP26Q9Kj29ngc0_amIgt0W3oMYwTfipcLpeku8kT_wjN5Qw22e2xZwH4ULCpJ70fo9vFsEnePq4etLbL-OR4n1af3ry-PF_VF-_fvjtfXtROCjHWdt2KxUIB084hAnBmuW4p41q1wlknFdWUa2CSKaZxLVomXdMoyaVaKGf5afXqwB326x43rsyebGeG5Hubbky03vydCX5ntvG7oaLhmpX6F8f6FK_3mEfT--yw62zAuM-mdGEgywz_E1LNFrQRE_H5P8KrsqNQPsEwACmZZqKI6oPIpbKKhO3txBTMZBZTzGKYNtpMZin6Z3efeUd9cMcfoM8j_rjN2_TNKM21NKsvXw18-LwS8FEZyX8Bh1XMow</recordid><startdate>199904</startdate><enddate>199904</enddate><creator>Tomita, Kozo</creator><creator>Ueda, Takuya</creator><creator>Watanabe, Kimitsuna</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199904</creationdate><title>The presence of pseudouridine in the anticodon alters the genetic code: A possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria</title><author>Tomita, Kozo ; Ueda, Takuya ; Watanabe, Kimitsuna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-abf4996027ccee0032a37f12376f4cac56171370252627eb4f25c886535696ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Anticodon</topic><topic>Asparagine - genetics</topic><topic>Base Sequence</topic><topic>Echinodermata</topic><topic>Echinodermata - genetics</topic><topic>Escherichia coli</topic><topic>Genetic Code</topic><topic>Lysine - genetics</topic><topic>Marine</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Biosynthesis</topic><topic>Pseudouridine - genetics</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomita, Kozo</creatorcontrib><creatorcontrib>Ueda, Takuya</creatorcontrib><creatorcontrib>Watanabe, Kimitsuna</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomita, Kozo</au><au>Ueda, Takuya</au><au>Watanabe, Kimitsuna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The presence of pseudouridine in the anticodon alters the genetic code: A possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Research</addtitle><date>1999-04</date><risdate>1999</risdate><volume>27</volume><issue>7</issue><spage>1683</spage><epage>1689</epage><pages>1683-1689</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>It has been inferred from DNA sequence analyses that in echinoderm mitochondria not only the usual asparagine codons AAU and AAC, but also the usual lysine codon AAA, are translated as asparagine by a single mitochondrial (mt) tRNAAsn with the anticodon GUU. Nucleotide sequencing of starfish mt tRNAAsn revealed that the anticodon is GΨU, U35 at the anticodon second position being modified to pseudouridine (Ψ). In contrast, mt tRNALys, corresponding to another lysine codon, AAG, has the anticodon CUU. mt tRNAs possessing anti-codons closely related to that of tRNAAsn, but responsible for decoding only two codons each—tRNAHis, tRNAAsp and tRNATyr—were found to possess unmodified U35 in all cases, suggesting the importance of Ψ35 for decoding the three codons. Therefore, the decoding capabilities of two synthetic Escherichia coli tRNAAla variants with the anticodon GΨU or GUU were examined using an E.coli in vitro translation system. Both tRNAs could translate not only AAC and AAU with similar efficiency, but also AAA with an efficiency that was ∼2-fold higher in the case of tRNAAlaGΨU than tRNAAlaGUU. These findings imply that Ψ35 of echinoderm mt tRNAAsn actually serves to decode the unusual asparagine codon AAA, resulting in the alteration of the genetic code in echinoderm mitochondria.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>10076000</pmid><doi>10.1093/nar/27.7.1683</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 1999-04, Vol.27 (7), p.1683-1689 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_148372 |
source | Oxford Journals Open Access Collection; MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution Animals Anticodon Asparagine - genetics Base Sequence Echinodermata Echinodermata - genetics Escherichia coli Genetic Code Lysine - genetics Marine Mitochondria - metabolism Molecular Sequence Data Nucleic Acid Conformation Protein Biosynthesis Pseudouridine - genetics RNA, Transfer - chemistry RNA, Transfer - genetics |
title | The presence of pseudouridine in the anticodon alters the genetic code: A possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20presence%20of%20pseudouridine%20in%20the%20anticodon%20alters%20the%20genetic%20code:%20A%20possible%20mechanism%20for%20assignment%20of%20the%20AAA%20lysine%20codon%20as%20asparagine%20in%20echinoderm%20mitochondria&rft.jtitle=Nucleic%20acids%20research&rft.au=Tomita,%20Kozo&rft.date=1999-04&rft.volume=27&rft.issue=7&rft.spage=1683&rft.epage=1689&rft.pages=1683-1689&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/27.7.1683&rft_dat=%3Cproquest_pubme%3E17291842%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200552724&rft_id=info:pmid/10076000&rfr_iscdi=true |