Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway

Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide scree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2006-07, Vol.17 (7), p.3031-3050
Hauptverfasser: Rubio-Texeira, Marta, Kaiser, Chris A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3050
container_issue 7
container_start_page 3031
container_title Molecular biology of the cell
container_volume 17
creator Rubio-Texeira, Marta
Kaiser, Chris A
description Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.
doi_str_mv 10.1091/mbc.e05-07-0669
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1483039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68581001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-b83a7b83224f264b6e00a633e99504bd396c7b19f07f50281255556ed861131f3</originalsourceid><addsrcrecordid>eNqFkTlPxDAQhS0E4q7pkCu6gCc-EjdICHFJSDRQW052kg0k8WI7i_bfY2DFUeHCHnnePD37I-QI2CkwDWdDVZ8ikxkrMqaU3iC7oLnOhCzVZqqZ1BnIXOyQvRCeGQMhVLFNdkApAbzgu-TlYuhGR23dzQL12E69jZiK6Dtc2p66hsY50hXaEGmLI_p0ab9n6AL9kHpIG--GT-nS1pPrrafR-hZjN7Z0YeP8za4OyFZj-4CH63OfPF1fPV7eZvcPN3eXF_dZLZWMWVVyW6Qtz0WTK1EpZMwqzlFryUQ141rVRQW6YUUjWV5CLtNSOCsVAIeG75PzL9_FVA04q3GMKbVZ-G6wfmWc7czfztjNTeuWBkTJGdfJ4GRt4N3rhCGaoQs19r0d0U3BqFKWkH7zXyHolCwXeRKefQlr70Lw2HynAWY-SJpE0iSShhXmg2SaOP79iB_9Gh1_B2blm7c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19555242</pqid></control><display><type>article</type><title>Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rubio-Texeira, Marta ; Kaiser, Chris A</creator><contributor>Riezman, Howard</contributor><creatorcontrib>Rubio-Texeira, Marta ; Kaiser, Chris A ; Riezman, Howard</creatorcontrib><description>Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>EISSN: 1059-1524</identifier><identifier>DOI: 10.1091/mbc.e05-07-0669</identifier><identifier>PMID: 16641373</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Amino Acid Transport Systems - analysis ; Amino Acid Transport Systems - genetics ; Amino Acid Transport Systems - metabolism ; Amino Acids - metabolism ; Amino Acids - pharmacology ; Cell Membrane - metabolism ; Endocytosis ; Endosomes - metabolism ; Golgi Apparatus - metabolism ; Green Fluorescent Proteins - analysis ; Green Fluorescent Proteins - genetics ; Mutation ; Protein Transport - drug effects ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - analysis ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Vacuoles - metabolism ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - physiology</subject><ispartof>Molecular biology of the cell, 2006-07, Vol.17 (7), p.3031-3050</ispartof><rights>2006 by The American Society for Cell Biology 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-b83a7b83224f264b6e00a633e99504bd396c7b19f07f50281255556ed861131f3</citedby><cites>FETCH-LOGICAL-c565t-b83a7b83224f264b6e00a633e99504bd396c7b19f07f50281255556ed861131f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1483039/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1483039/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16641373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Riezman, Howard</contributor><creatorcontrib>Rubio-Texeira, Marta</creatorcontrib><creatorcontrib>Kaiser, Chris A</creatorcontrib><title>Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.</description><subject>Amino Acid Transport Systems - analysis</subject><subject>Amino Acid Transport Systems - genetics</subject><subject>Amino Acid Transport Systems - metabolism</subject><subject>Amino Acids - metabolism</subject><subject>Amino Acids - pharmacology</subject><subject>Cell Membrane - metabolism</subject><subject>Endocytosis</subject><subject>Endosomes - metabolism</subject><subject>Golgi Apparatus - metabolism</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Mutation</subject><subject>Protein Transport - drug effects</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - analysis</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Vacuoles - metabolism</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - physiology</subject><issn>1059-1524</issn><issn>1939-4586</issn><issn>1059-1524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTlPxDAQhS0E4q7pkCu6gCc-EjdICHFJSDRQW052kg0k8WI7i_bfY2DFUeHCHnnePD37I-QI2CkwDWdDVZ8ikxkrMqaU3iC7oLnOhCzVZqqZ1BnIXOyQvRCeGQMhVLFNdkApAbzgu-TlYuhGR23dzQL12E69jZiK6Dtc2p66hsY50hXaEGmLI_p0ab9n6AL9kHpIG--GT-nS1pPrrafR-hZjN7Z0YeP8za4OyFZj-4CH63OfPF1fPV7eZvcPN3eXF_dZLZWMWVVyW6Qtz0WTK1EpZMwqzlFryUQ141rVRQW6YUUjWV5CLtNSOCsVAIeG75PzL9_FVA04q3GMKbVZ-G6wfmWc7czfztjNTeuWBkTJGdfJ4GRt4N3rhCGaoQs19r0d0U3BqFKWkH7zXyHolCwXeRKefQlr70Lw2HynAWY-SJpE0iSShhXmg2SaOP79iB_9Gh1_B2blm7c</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Rubio-Texeira, Marta</creator><creator>Kaiser, Chris A</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200607</creationdate><title>Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway</title><author>Rubio-Texeira, Marta ; Kaiser, Chris A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-b83a7b83224f264b6e00a633e99504bd396c7b19f07f50281255556ed861131f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Transport Systems - analysis</topic><topic>Amino Acid Transport Systems - genetics</topic><topic>Amino Acid Transport Systems - metabolism</topic><topic>Amino Acids - metabolism</topic><topic>Amino Acids - pharmacology</topic><topic>Cell Membrane - metabolism</topic><topic>Endocytosis</topic><topic>Endosomes - metabolism</topic><topic>Golgi Apparatus - metabolism</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Mutation</topic><topic>Protein Transport - drug effects</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - analysis</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Vacuoles - metabolism</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubio-Texeira, Marta</creatorcontrib><creatorcontrib>Kaiser, Chris A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubio-Texeira, Marta</au><au>Kaiser, Chris A</au><au>Riezman, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2006-07</date><risdate>2006</risdate><volume>17</volume><issue>7</issue><spage>3031</spage><epage>3050</epage><pages>3031-3050</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><eissn>1059-1524</eissn><abstract>Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>16641373</pmid><doi>10.1091/mbc.e05-07-0669</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2006-07, Vol.17 (7), p.3031-3050
issn 1059-1524
1939-4586
1059-1524
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1483039
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Transport Systems - analysis
Amino Acid Transport Systems - genetics
Amino Acid Transport Systems - metabolism
Amino Acids - metabolism
Amino Acids - pharmacology
Cell Membrane - metabolism
Endocytosis
Endosomes - metabolism
Golgi Apparatus - metabolism
Green Fluorescent Proteins - analysis
Green Fluorescent Proteins - genetics
Mutation
Protein Transport - drug effects
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - analysis
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Vacuoles - metabolism
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - physiology
title Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino%20acids%20regulate%20retrieval%20of%20the%20yeast%20general%20amino%20acid%20permease%20from%20the%20vacuolar%20targeting%20pathway&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Rubio-Texeira,%20Marta&rft.date=2006-07&rft.volume=17&rft.issue=7&rft.spage=3031&rft.epage=3050&rft.pages=3031-3050&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.e05-07-0669&rft_dat=%3Cproquest_pubme%3E68581001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19555242&rft_id=info:pmid/16641373&rfr_iscdi=true