Detecting and adjusting for artifacts in fMRI time series data

We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2005-09, Vol.27 (3), p.624-634
Hauptverfasser: Diedrichsen, Jörn, Shadmehr, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 3
container_start_page 624
container_title NeuroImage (Orlando, Fla.)
container_volume 27
creator Diedrichsen, Jörn
Shadmehr, Reza
description We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or arm movements can increase noise in a spatially global pattern throughout an image, leading to a non-stationary noise process. We derive a restricted maximum likelihood (ReML) algorithm that estimates the variance of the noise for each image in the time series. These variance parameters are then used to obtain a weighted least squares estimate of the regression parameters of a linear model. We apply this approach to a typical fMRI experiment with a block design and show that the noise estimates strongly vary across different images and that our method detects and appropriately weights images that are affected by artifacts. Furthermore, we show that the noise process has a global spatial distribution and that the variance increase is multiplicative rather than additive. The new algorithm results in significantly increased sensitivity in the ability to detect regions of activation. The new method may be particularly useful for studies that involve special populations (e.g., children or elderly) where sporadic, artifact-generating events are more likely.
doi_str_mv 10.1016/j.neuroimage.2005.04.039
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1479857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811905003095</els_id><sourcerecordid>68497180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-52e31aeb7c56d933948185051e397a2309913bf68fd7f5e68dbbcbe26b701d313</originalsourceid><addsrcrecordid>eNqFkV2L1TAQhoMo7of-BQkI3rXOJE2T3Czo6urCiiB6HdJkekw5p12TdsF_b4_n4Ko3e5WEPPNOMg9jHKFGwPb1UI-05Cnt_IZqAaBqaGqQ9hE7RbCqskqLx_u9kpVBtCfsrJQBACw25ik7QWW1MsKcsot3NFOY07jhfozcx2Epv0_9lLnPc-p9mAtPI-8_fbnmc9oRL5QTFR797J-xJ73fFnp-XM_Zt6v3Xy8_VjefP1xfvrmpQgtirpQgiZ46HVQbrZS2MWgUKCRptRcSrEXZ9a3po-4VtSZ2XehItJ0GjBLlObs45N4u3Y5ioHHOfutu8zqC_NNNPrl_b8b03W2mO4eNtkbpNeDVMSBPPxYqs9ulEmi79SNNS3GtaaxGAw-CaBslFNgVfPkfOExLHtcpOFSgRaMs7OPMgQp5KiVT_-fNCG7v0g3u3qXbu3TQuNXlWvri7z_fFx7lrcDbA0Dr5O8SZVdCojFQTHl16uKUHu7yCwMitK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507245900</pqid></control><display><type>article</type><title>Detecting and adjusting for artifacts in fMRI time series data</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Diedrichsen, Jörn ; Shadmehr, Reza</creator><creatorcontrib>Diedrichsen, Jörn ; Shadmehr, Reza</creatorcontrib><description>We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or arm movements can increase noise in a spatially global pattern throughout an image, leading to a non-stationary noise process. We derive a restricted maximum likelihood (ReML) algorithm that estimates the variance of the noise for each image in the time series. These variance parameters are then used to obtain a weighted least squares estimate of the regression parameters of a linear model. We apply this approach to a typical fMRI experiment with a block design and show that the noise estimates strongly vary across different images and that our method detects and appropriately weights images that are affected by artifacts. Furthermore, we show that the noise process has a global spatial distribution and that the variance increase is multiplicative rather than additive. The new algorithm results in significantly increased sensitivity in the ability to detect regions of activation. The new method may be particularly useful for studies that involve special populations (e.g., children or elderly) where sporadic, artifact-generating events are more likely.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2005.04.039</identifier><identifier>PMID: 15975828</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Cerebral Cortex - anatomy &amp; histology ; Cerebral Cortex - physiology ; Computer Simulation ; Economic models ; Estimates ; Estimation ; Functional MRI ; Humans ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Likelihood Functions ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Models, Statistical ; Monte Carlo Method ; Noise ; Regression analysis ; Restricted maximum likelihood ; Standard deviation ; Time series ; Weighted least squares</subject><ispartof>NeuroImage (Orlando, Fla.), 2005-09, Vol.27 (3), p.624-634</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Sep 1, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-52e31aeb7c56d933948185051e397a2309913bf68fd7f5e68dbbcbe26b701d313</citedby><cites>FETCH-LOGICAL-c602t-52e31aeb7c56d933948185051e397a2309913bf68fd7f5e68dbbcbe26b701d313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1507245900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15975828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diedrichsen, Jörn</creatorcontrib><creatorcontrib>Shadmehr, Reza</creatorcontrib><title>Detecting and adjusting for artifacts in fMRI time series data</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or arm movements can increase noise in a spatially global pattern throughout an image, leading to a non-stationary noise process. We derive a restricted maximum likelihood (ReML) algorithm that estimates the variance of the noise for each image in the time series. These variance parameters are then used to obtain a weighted least squares estimate of the regression parameters of a linear model. We apply this approach to a typical fMRI experiment with a block design and show that the noise estimates strongly vary across different images and that our method detects and appropriately weights images that are affected by artifacts. Furthermore, we show that the noise process has a global spatial distribution and that the variance increase is multiplicative rather than additive. The new algorithm results in significantly increased sensitivity in the ability to detect regions of activation. The new method may be particularly useful for studies that involve special populations (e.g., children or elderly) where sporadic, artifact-generating events are more likely.</description><subject>Algorithms</subject><subject>Cerebral Cortex - anatomy &amp; histology</subject><subject>Cerebral Cortex - physiology</subject><subject>Computer Simulation</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Functional MRI</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Likelihood Functions</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Noise</subject><subject>Regression analysis</subject><subject>Restricted maximum likelihood</subject><subject>Standard deviation</subject><subject>Time series</subject><subject>Weighted least squares</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkV2L1TAQhoMo7of-BQkI3rXOJE2T3Czo6urCiiB6HdJkekw5p12TdsF_b4_n4Ko3e5WEPPNOMg9jHKFGwPb1UI-05Cnt_IZqAaBqaGqQ9hE7RbCqskqLx_u9kpVBtCfsrJQBACw25ik7QWW1MsKcsot3NFOY07jhfozcx2Epv0_9lLnPc-p9mAtPI-8_fbnmc9oRL5QTFR797J-xJ73fFnp-XM_Zt6v3Xy8_VjefP1xfvrmpQgtirpQgiZ46HVQbrZS2MWgUKCRptRcSrEXZ9a3po-4VtSZ2XehItJ0GjBLlObs45N4u3Y5ioHHOfutu8zqC_NNNPrl_b8b03W2mO4eNtkbpNeDVMSBPPxYqs9ulEmi79SNNS3GtaaxGAw-CaBslFNgVfPkfOExLHtcpOFSgRaMs7OPMgQp5KiVT_-fNCG7v0g3u3qXbu3TQuNXlWvri7z_fFx7lrcDbA0Dr5O8SZVdCojFQTHl16uKUHu7yCwMitK0</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Diedrichsen, Jörn</creator><creator>Shadmehr, Reza</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050901</creationdate><title>Detecting and adjusting for artifacts in fMRI time series data</title><author>Diedrichsen, Jörn ; Shadmehr, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-52e31aeb7c56d933948185051e397a2309913bf68fd7f5e68dbbcbe26b701d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Cerebral Cortex - anatomy &amp; histology</topic><topic>Cerebral Cortex - physiology</topic><topic>Computer Simulation</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Functional MRI</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Likelihood Functions</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Noise</topic><topic>Regression analysis</topic><topic>Restricted maximum likelihood</topic><topic>Standard deviation</topic><topic>Time series</topic><topic>Weighted least squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diedrichsen, Jörn</creatorcontrib><creatorcontrib>Shadmehr, Reza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diedrichsen, Jörn</au><au>Shadmehr, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting and adjusting for artifacts in fMRI time series data</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>27</volume><issue>3</issue><spage>624</spage><epage>634</epage><pages>624-634</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or arm movements can increase noise in a spatially global pattern throughout an image, leading to a non-stationary noise process. We derive a restricted maximum likelihood (ReML) algorithm that estimates the variance of the noise for each image in the time series. These variance parameters are then used to obtain a weighted least squares estimate of the regression parameters of a linear model. We apply this approach to a typical fMRI experiment with a block design and show that the noise estimates strongly vary across different images and that our method detects and appropriately weights images that are affected by artifacts. Furthermore, we show that the noise process has a global spatial distribution and that the variance increase is multiplicative rather than additive. The new algorithm results in significantly increased sensitivity in the ability to detect regions of activation. The new method may be particularly useful for studies that involve special populations (e.g., children or elderly) where sporadic, artifact-generating events are more likely.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15975828</pmid><doi>10.1016/j.neuroimage.2005.04.039</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2005-09, Vol.27 (3), p.624-634
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1479857
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Algorithms
Cerebral Cortex - anatomy & histology
Cerebral Cortex - physiology
Computer Simulation
Economic models
Estimates
Estimation
Functional MRI
Humans
Image Processing, Computer-Assisted - statistics & numerical data
Likelihood Functions
Magnetic Resonance Imaging - statistics & numerical data
Models, Statistical
Monte Carlo Method
Noise
Regression analysis
Restricted maximum likelihood
Standard deviation
Time series
Weighted least squares
title Detecting and adjusting for artifacts in fMRI time series data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20and%20adjusting%20for%20artifacts%20in%20fMRI%20time%20series%20data&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Diedrichsen,%20J%C3%B6rn&rft.date=2005-09-01&rft.volume=27&rft.issue=3&rft.spage=624&rft.epage=634&rft.pages=624-634&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2005.04.039&rft_dat=%3Cproquest_pubme%3E68497180%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507245900&rft_id=info:pmid/15975828&rft_els_id=S1053811905003095&rfr_iscdi=true