Detecting and adjusting for artifacts in fMRI time series data
We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or a...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2005-09, Vol.27 (3), p.624-634 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 3 |
container_start_page | 624 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 27 |
creator | Diedrichsen, Jörn Shadmehr, Reza |
description | We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or arm movements can increase noise in a spatially global pattern throughout an image, leading to a non-stationary noise process. We derive a restricted maximum likelihood (ReML) algorithm that estimates the variance of the noise for each image in the time series. These variance parameters are then used to obtain a weighted least squares estimate of the regression parameters of a linear model. We apply this approach to a typical fMRI experiment with a block design and show that the noise estimates strongly vary across different images and that our method detects and appropriately weights images that are affected by artifacts. Furthermore, we show that the noise process has a global spatial distribution and that the variance increase is multiplicative rather than additive. The new algorithm results in significantly increased sensitivity in the ability to detect regions of activation. The new method may be particularly useful for studies that involve special populations (e.g., children or elderly) where sporadic, artifact-generating events are more likely. |
doi_str_mv | 10.1016/j.neuroimage.2005.04.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1479857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811905003095</els_id><sourcerecordid>68497180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-52e31aeb7c56d933948185051e397a2309913bf68fd7f5e68dbbcbe26b701d313</originalsourceid><addsrcrecordid>eNqFkV2L1TAQhoMo7of-BQkI3rXOJE2T3Czo6urCiiB6HdJkekw5p12TdsF_b4_n4Ko3e5WEPPNOMg9jHKFGwPb1UI-05Cnt_IZqAaBqaGqQ9hE7RbCqskqLx_u9kpVBtCfsrJQBACw25ik7QWW1MsKcsot3NFOY07jhfozcx2Epv0_9lLnPc-p9mAtPI-8_fbnmc9oRL5QTFR797J-xJ73fFnp-XM_Zt6v3Xy8_VjefP1xfvrmpQgtirpQgiZ46HVQbrZS2MWgUKCRptRcSrEXZ9a3po-4VtSZ2XehItJ0GjBLlObs45N4u3Y5ioHHOfutu8zqC_NNNPrl_b8b03W2mO4eNtkbpNeDVMSBPPxYqs9ulEmi79SNNS3GtaaxGAw-CaBslFNgVfPkfOExLHtcpOFSgRaMs7OPMgQp5KiVT_-fNCG7v0g3u3qXbu3TQuNXlWvri7z_fFx7lrcDbA0Dr5O8SZVdCojFQTHl16uKUHu7yCwMitK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507245900</pqid></control><display><type>article</type><title>Detecting and adjusting for artifacts in fMRI time series data</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Diedrichsen, Jörn ; Shadmehr, Reza</creator><creatorcontrib>Diedrichsen, Jörn ; Shadmehr, Reza</creatorcontrib><description>We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or arm movements can increase noise in a spatially global pattern throughout an image, leading to a non-stationary noise process. We derive a restricted maximum likelihood (ReML) algorithm that estimates the variance of the noise for each image in the time series. These variance parameters are then used to obtain a weighted least squares estimate of the regression parameters of a linear model. We apply this approach to a typical fMRI experiment with a block design and show that the noise estimates strongly vary across different images and that our method detects and appropriately weights images that are affected by artifacts. Furthermore, we show that the noise process has a global spatial distribution and that the variance increase is multiplicative rather than additive. The new algorithm results in significantly increased sensitivity in the ability to detect regions of activation. The new method may be particularly useful for studies that involve special populations (e.g., children or elderly) where sporadic, artifact-generating events are more likely.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2005.04.039</identifier><identifier>PMID: 15975828</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Cerebral Cortex - anatomy & histology ; Cerebral Cortex - physiology ; Computer Simulation ; Economic models ; Estimates ; Estimation ; Functional MRI ; Humans ; Image Processing, Computer-Assisted - statistics & numerical data ; Likelihood Functions ; Magnetic Resonance Imaging - statistics & numerical data ; Models, Statistical ; Monte Carlo Method ; Noise ; Regression analysis ; Restricted maximum likelihood ; Standard deviation ; Time series ; Weighted least squares</subject><ispartof>NeuroImage (Orlando, Fla.), 2005-09, Vol.27 (3), p.624-634</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Sep 1, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-52e31aeb7c56d933948185051e397a2309913bf68fd7f5e68dbbcbe26b701d313</citedby><cites>FETCH-LOGICAL-c602t-52e31aeb7c56d933948185051e397a2309913bf68fd7f5e68dbbcbe26b701d313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1507245900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15975828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diedrichsen, Jörn</creatorcontrib><creatorcontrib>Shadmehr, Reza</creatorcontrib><title>Detecting and adjusting for artifacts in fMRI time series data</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or arm movements can increase noise in a spatially global pattern throughout an image, leading to a non-stationary noise process. We derive a restricted maximum likelihood (ReML) algorithm that estimates the variance of the noise for each image in the time series. These variance parameters are then used to obtain a weighted least squares estimate of the regression parameters of a linear model. We apply this approach to a typical fMRI experiment with a block design and show that the noise estimates strongly vary across different images and that our method detects and appropriately weights images that are affected by artifacts. Furthermore, we show that the noise process has a global spatial distribution and that the variance increase is multiplicative rather than additive. The new algorithm results in significantly increased sensitivity in the ability to detect regions of activation. The new method may be particularly useful for studies that involve special populations (e.g., children or elderly) where sporadic, artifact-generating events are more likely.</description><subject>Algorithms</subject><subject>Cerebral Cortex - anatomy & histology</subject><subject>Cerebral Cortex - physiology</subject><subject>Computer Simulation</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Functional MRI</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Likelihood Functions</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Noise</subject><subject>Regression analysis</subject><subject>Restricted maximum likelihood</subject><subject>Standard deviation</subject><subject>Time series</subject><subject>Weighted least squares</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkV2L1TAQhoMo7of-BQkI3rXOJE2T3Czo6urCiiB6HdJkekw5p12TdsF_b4_n4Ko3e5WEPPNOMg9jHKFGwPb1UI-05Cnt_IZqAaBqaGqQ9hE7RbCqskqLx_u9kpVBtCfsrJQBACw25ik7QWW1MsKcsot3NFOY07jhfozcx2Epv0_9lLnPc-p9mAtPI-8_fbnmc9oRL5QTFR797J-xJ73fFnp-XM_Zt6v3Xy8_VjefP1xfvrmpQgtirpQgiZ46HVQbrZS2MWgUKCRptRcSrEXZ9a3po-4VtSZ2XehItJ0GjBLlObs45N4u3Y5ioHHOfutu8zqC_NNNPrl_b8b03W2mO4eNtkbpNeDVMSBPPxYqs9ulEmi79SNNS3GtaaxGAw-CaBslFNgVfPkfOExLHtcpOFSgRaMs7OPMgQp5KiVT_-fNCG7v0g3u3qXbu3TQuNXlWvri7z_fFx7lrcDbA0Dr5O8SZVdCojFQTHl16uKUHu7yCwMitK0</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Diedrichsen, Jörn</creator><creator>Shadmehr, Reza</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050901</creationdate><title>Detecting and adjusting for artifacts in fMRI time series data</title><author>Diedrichsen, Jörn ; Shadmehr, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-52e31aeb7c56d933948185051e397a2309913bf68fd7f5e68dbbcbe26b701d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Cerebral Cortex - anatomy & histology</topic><topic>Cerebral Cortex - physiology</topic><topic>Computer Simulation</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Functional MRI</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Likelihood Functions</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Noise</topic><topic>Regression analysis</topic><topic>Restricted maximum likelihood</topic><topic>Standard deviation</topic><topic>Time series</topic><topic>Weighted least squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diedrichsen, Jörn</creatorcontrib><creatorcontrib>Shadmehr, Reza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diedrichsen, Jörn</au><au>Shadmehr, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting and adjusting for artifacts in fMRI time series data</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>27</volume><issue>3</issue><spage>624</spage><epage>634</epage><pages>624-634</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We present a new method to detect and adjust for noise and artifacts in functional MRI time series data. We note that the assumption of stationary variance, which is central to the theoretical treatment of fMRI time series data, is often violated in practice. Sporadic events such as eye, mouth, or arm movements can increase noise in a spatially global pattern throughout an image, leading to a non-stationary noise process. We derive a restricted maximum likelihood (ReML) algorithm that estimates the variance of the noise for each image in the time series. These variance parameters are then used to obtain a weighted least squares estimate of the regression parameters of a linear model. We apply this approach to a typical fMRI experiment with a block design and show that the noise estimates strongly vary across different images and that our method detects and appropriately weights images that are affected by artifacts. Furthermore, we show that the noise process has a global spatial distribution and that the variance increase is multiplicative rather than additive. The new algorithm results in significantly increased sensitivity in the ability to detect regions of activation. The new method may be particularly useful for studies that involve special populations (e.g., children or elderly) where sporadic, artifact-generating events are more likely.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15975828</pmid><doi>10.1016/j.neuroimage.2005.04.039</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2005-09, Vol.27 (3), p.624-634 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1479857 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Algorithms Cerebral Cortex - anatomy & histology Cerebral Cortex - physiology Computer Simulation Economic models Estimates Estimation Functional MRI Humans Image Processing, Computer-Assisted - statistics & numerical data Likelihood Functions Magnetic Resonance Imaging - statistics & numerical data Models, Statistical Monte Carlo Method Noise Regression analysis Restricted maximum likelihood Standard deviation Time series Weighted least squares |
title | Detecting and adjusting for artifacts in fMRI time series data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20and%20adjusting%20for%20artifacts%20in%20fMRI%20time%20series%20data&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Diedrichsen,%20J%C3%B6rn&rft.date=2005-09-01&rft.volume=27&rft.issue=3&rft.spage=624&rft.epage=634&rft.pages=624-634&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2005.04.039&rft_dat=%3Cproquest_pubme%3E68497180%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507245900&rft_id=info:pmid/15975828&rft_els_id=S1053811905003095&rfr_iscdi=true |