What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration

A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these princip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-01, Vol.98 (3), p.1282-1287
Hauptverfasser: Hopfield, J. J., Brody, Carlos D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1287
container_issue 3
container_start_page 1282
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Hopfield, J. J.
Brody, Carlos D.
description A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs.
doi_str_mv 10.1073/pnas.031567098
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_14746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3054859</jstor_id><sourcerecordid>3054859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-48f3485af1292df1c9147c781fde05141f46b2a4943bcb0dc6dfdf30e3684d9c3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modl29elIJHrxNfZlkZhIQRBZ_FFo8tOLNkM0k3SwzyTTJFPe_N0vXpYrgKSHfz8v78B5CzwmcEujo28mrdAqUNG0Hgj9ACwKCVC0T8BAtAOqu4qxmJ-hJSlsAEA2Hx-iEENLwlpIF-vF9ozJ2CSt8EUbj83t8FZVPrlzx5c7rTQx-h9UeWIVhMDq7W4MvjN4o79KIbYj4clLZhWzGKUQ14DOfzXXcP_mn6JFVQzLPDucSffv08Wr1pTr_-vls9eG80qzrcsW4pYw3ypJa1L0lWhDW6Y4T2xtoCCOWtetaMcHoWq-h121ve0vB0JazXmi6RO_u_p3m9Wh6XeyLiZyiG1XcyaCc_DPxbiOvw60sfVhbyt8cymO4mU3KcnRJm2FQ3oQ5yQ5aShnt_gsSDjXZ00v0-i9wG-boywxkDYQKITgr0Kv71kfd3-spwMsDUNZ8jAWXVJKa1_d0_plLOw9DNj9zAV_cgduUQzySFJoydkF_AdARs-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201399984</pqid></control><display><type>article</type><title>What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hopfield, J. J. ; Brody, Carlos D.</creator><creatorcontrib>Hopfield, J. J. ; Brody, Carlos D.</creatorcontrib><description>A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.031567098</identifier><identifier>PMID: 11158631</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials - physiology ; Biological Sciences ; Biology ; Brain - physiology ; Electroencephalography ; Humans ; Models, Neurological ; Neurology ; Neurons - physiology ; Space Perception - physiology ; Synapses - physiology ; Time Perception - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-01, Vol.98 (3), p.1282-1287</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 30, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-48f3485af1292df1c9147c781fde05141f46b2a4943bcb0dc6dfdf30e3684d9c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3054859$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3054859$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11158631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hopfield, J. J.</creatorcontrib><creatorcontrib>Brody, Carlos D.</creatorcontrib><title>What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs.</description><subject>Action Potentials - physiology</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Brain - physiology</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Neurology</subject><subject>Neurons - physiology</subject><subject>Space Perception - physiology</subject><subject>Synapses - physiology</subject><subject>Time Perception - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modl29elIJHrxNfZlkZhIQRBZ_FFo8tOLNkM0k3SwzyTTJFPe_N0vXpYrgKSHfz8v78B5CzwmcEujo28mrdAqUNG0Hgj9ACwKCVC0T8BAtAOqu4qxmJ-hJSlsAEA2Hx-iEENLwlpIF-vF9ozJ2CSt8EUbj83t8FZVPrlzx5c7rTQx-h9UeWIVhMDq7W4MvjN4o79KIbYj4clLZhWzGKUQ14DOfzXXcP_mn6JFVQzLPDucSffv08Wr1pTr_-vls9eG80qzrcsW4pYw3ypJa1L0lWhDW6Y4T2xtoCCOWtetaMcHoWq-h121ve0vB0JazXmi6RO_u_p3m9Wh6XeyLiZyiG1XcyaCc_DPxbiOvw60sfVhbyt8cymO4mU3KcnRJm2FQ3oQ5yQ5aShnt_gsSDjXZ00v0-i9wG-boywxkDYQKITgr0Kv71kfd3-spwMsDUNZ8jAWXVJKa1_d0_plLOw9DNj9zAV_cgduUQzySFJoydkF_AdARs-s</recordid><startdate>20010130</startdate><enddate>20010130</enddate><creator>Hopfield, J. J.</creator><creator>Brody, Carlos D.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010130</creationdate><title>What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration</title><author>Hopfield, J. J. ; Brody, Carlos D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-48f3485af1292df1c9147c781fde05141f46b2a4943bcb0dc6dfdf30e3684d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials - physiology</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Brain - physiology</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Neurology</topic><topic>Neurons - physiology</topic><topic>Space Perception - physiology</topic><topic>Synapses - physiology</topic><topic>Time Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hopfield, J. J.</creatorcontrib><creatorcontrib>Brody, Carlos D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopfield, J. J.</au><au>Brody, Carlos D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-01-30</date><risdate>2001</risdate><volume>98</volume><issue>3</issue><spage>1282</spage><epage>1287</epage><pages>1282-1287</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11158631</pmid><doi>10.1073/pnas.031567098</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-01, Vol.98 (3), p.1282-1287
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_14746
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Action Potentials - physiology
Biological Sciences
Biology
Brain - physiology
Electroencephalography
Humans
Models, Neurological
Neurology
Neurons - physiology
Space Perception - physiology
Synapses - physiology
Time Perception - physiology
title What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20is%20a%20Moment?%20Transient%20Synchrony%20as%20a%20Collective%20Mechanism%20for%20Spatiotemporal%20Integration&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hopfield,%20J.%20J.&rft.date=2001-01-30&rft.volume=98&rft.issue=3&rft.spage=1282&rft.epage=1287&rft.pages=1282-1287&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.031567098&rft_dat=%3Cjstor_pubme%3E3054859%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201399984&rft_id=info:pmid/11158631&rft_jstor_id=3054859&rfr_iscdi=true