What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration
A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these princip...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2001-01, Vol.98 (3), p.1282-1287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1287 |
---|---|
container_issue | 3 |
container_start_page | 1282 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Hopfield, J. J. Brody, Carlos D. |
description | A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs. |
doi_str_mv | 10.1073/pnas.031567098 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_14746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3054859</jstor_id><sourcerecordid>3054859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-48f3485af1292df1c9147c781fde05141f46b2a4943bcb0dc6dfdf30e3684d9c3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modl29elIJHrxNfZlkZhIQRBZ_FFo8tOLNkM0k3SwzyTTJFPe_N0vXpYrgKSHfz8v78B5CzwmcEujo28mrdAqUNG0Hgj9ACwKCVC0T8BAtAOqu4qxmJ-hJSlsAEA2Hx-iEENLwlpIF-vF9ozJ2CSt8EUbj83t8FZVPrlzx5c7rTQx-h9UeWIVhMDq7W4MvjN4o79KIbYj4clLZhWzGKUQ14DOfzXXcP_mn6JFVQzLPDucSffv08Wr1pTr_-vls9eG80qzrcsW4pYw3ypJa1L0lWhDW6Y4T2xtoCCOWtetaMcHoWq-h121ve0vB0JazXmi6RO_u_p3m9Wh6XeyLiZyiG1XcyaCc_DPxbiOvw60sfVhbyt8cymO4mU3KcnRJm2FQ3oQ5yQ5aShnt_gsSDjXZ00v0-i9wG-boywxkDYQKITgr0Kv71kfd3-spwMsDUNZ8jAWXVJKa1_d0_plLOw9DNj9zAV_cgduUQzySFJoydkF_AdARs-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201399984</pqid></control><display><type>article</type><title>What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hopfield, J. J. ; Brody, Carlos D.</creator><creatorcontrib>Hopfield, J. J. ; Brody, Carlos D.</creatorcontrib><description>A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.031567098</identifier><identifier>PMID: 11158631</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials - physiology ; Biological Sciences ; Biology ; Brain - physiology ; Electroencephalography ; Humans ; Models, Neurological ; Neurology ; Neurons - physiology ; Space Perception - physiology ; Synapses - physiology ; Time Perception - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-01, Vol.98 (3), p.1282-1287</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 30, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-48f3485af1292df1c9147c781fde05141f46b2a4943bcb0dc6dfdf30e3684d9c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3054859$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3054859$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11158631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hopfield, J. J.</creatorcontrib><creatorcontrib>Brody, Carlos D.</creatorcontrib><title>What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs.</description><subject>Action Potentials - physiology</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Brain - physiology</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Neurology</subject><subject>Neurons - physiology</subject><subject>Space Perception - physiology</subject><subject>Synapses - physiology</subject><subject>Time Perception - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modl29elIJHrxNfZlkZhIQRBZ_FFo8tOLNkM0k3SwzyTTJFPe_N0vXpYrgKSHfz8v78B5CzwmcEujo28mrdAqUNG0Hgj9ACwKCVC0T8BAtAOqu4qxmJ-hJSlsAEA2Hx-iEENLwlpIF-vF9ozJ2CSt8EUbj83t8FZVPrlzx5c7rTQx-h9UeWIVhMDq7W4MvjN4o79KIbYj4clLZhWzGKUQ14DOfzXXcP_mn6JFVQzLPDucSffv08Wr1pTr_-vls9eG80qzrcsW4pYw3ypJa1L0lWhDW6Y4T2xtoCCOWtetaMcHoWq-h121ve0vB0JazXmi6RO_u_p3m9Wh6XeyLiZyiG1XcyaCc_DPxbiOvw60sfVhbyt8cymO4mU3KcnRJm2FQ3oQ5yQ5aShnt_gsSDjXZ00v0-i9wG-boywxkDYQKITgr0Kv71kfd3-spwMsDUNZ8jAWXVJKa1_d0_plLOw9DNj9zAV_cgduUQzySFJoydkF_AdARs-s</recordid><startdate>20010130</startdate><enddate>20010130</enddate><creator>Hopfield, J. J.</creator><creator>Brody, Carlos D.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010130</creationdate><title>What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration</title><author>Hopfield, J. J. ; Brody, Carlos D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-48f3485af1292df1c9147c781fde05141f46b2a4943bcb0dc6dfdf30e3684d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials - physiology</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Brain - physiology</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Neurology</topic><topic>Neurons - physiology</topic><topic>Space Perception - physiology</topic><topic>Synapses - physiology</topic><topic>Time Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hopfield, J. J.</creatorcontrib><creatorcontrib>Brody, Carlos D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopfield, J. J.</au><au>Brody, Carlos D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-01-30</date><risdate>2001</risdate><volume>98</volume><issue>3</issue><spage>1282</spage><epage>1287</epage><pages>1282-1287</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11158631</pmid><doi>10.1073/pnas.031567098</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-01, Vol.98 (3), p.1282-1287 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_14746 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Action Potentials - physiology Biological Sciences Biology Brain - physiology Electroencephalography Humans Models, Neurological Neurology Neurons - physiology Space Perception - physiology Synapses - physiology Time Perception - physiology |
title | What is a Moment? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20is%20a%20Moment?%20Transient%20Synchrony%20as%20a%20Collective%20Mechanism%20for%20Spatiotemporal%20Integration&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hopfield,%20J.%20J.&rft.date=2001-01-30&rft.volume=98&rft.issue=3&rft.spage=1282&rft.epage=1287&rft.pages=1282-1287&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.031567098&rft_dat=%3Cjstor_pubme%3E3054859%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201399984&rft_id=info:pmid/11158631&rft_jstor_id=3054859&rfr_iscdi=true |