High and low affinity Ca2+ binding to the sarcoplasmic reticulum: use of a high-affinity fluorescent calcium indicator
The fluorescent calcium indicator, calcein, has been used as a high-affinity indicator of Ca2+ in the aqueous phase at physiological pH in the study of high-affinity calcium binding to sarcoplasmic reticulum (SR). The binding constant of the indicator at physiological pH is 10(3)-10(4) M-1 and incre...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1977-04, Vol.18 (1), p.3-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fluorescent calcium indicator, calcein, has been used as a high-affinity indicator of Ca2+ in the aqueous phase at physiological pH in the study of high-affinity calcium binding to sarcoplasmic reticulum (SR). The binding constant of the indicator at physiological pH is 10(3)-10(4) M-1 and increases with increasing pH. The binding mechanism of the indicator with Ca2+ and Mg2+ is described. Application of calcein as an aqueous indicator of Ca2+ binding to the SR at room temperature has revealed two classes of binding sites: one with high capacity and low affinity (ca. 820 nmol/mg protein, Kd = 1.9 mM), and another with low capacity and higher affinity (ca. 35 nmol/mg protein, Kd = 17.5 micronM). The divalent cation specificity of the low-affinity site is low and Ca2+/Mg2+ specificity of the high-affinity site is high. Quantitative studies of the bindings indicate that the high-affinity site residues in the Ca2+ ATPase (carrier) protein and represents complexation in the active site of the carrier and that the low-affinity site residues in the nonspecific acidic binding proteins. The contribution of Donnan equilibrium effects to the measured binding is shown to be insignificant. Stopped flow kinetic studies of Ca2+ passive binding with calcein and arsenazo III dyes have demonstrated that the binding to high-affinity site is very fast and that the overall binding reaction with the low-affinity site is slow, with a time course of about 4 s. Our analysis has shown that at least part of the low-affinity acidic proteins are within the SR matrix and that Ca2+ can reach them only by transversing the membrane via the Ca2+ carrier (Ca2+ ATPase). A model of the SR is proposed that accounts for several functional properties of the organelle in terms of its known protein composition and topological organization. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(77)85592-6 |