SOX2 is a dose-dependent regulator of retinal neural progenitor competence

Approximately 10% of humans with anophthalmia (absent eye) or severe microphthalmia (small eye) show haploid insufficiency due to mutations in SOX2, a SOXB1-HMG box transcription factor. However, at present, the molecular or cellular mechanisms responsible for these conditions are poorly understood....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2006-05, Vol.20 (9), p.1187-1202
Hauptverfasser: Taranova, Olena V, Magness, Scott T, Fagan, B Matthew, Wu, Yongqin, Surzenko, Natalie, Hutton, Scott R, Pevny, Larysa H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1202
container_issue 9
container_start_page 1187
container_title Genes & development
container_volume 20
creator Taranova, Olena V
Magness, Scott T
Fagan, B Matthew
Wu, Yongqin
Surzenko, Natalie
Hutton, Scott R
Pevny, Larysa H
description Approximately 10% of humans with anophthalmia (absent eye) or severe microphthalmia (small eye) show haploid insufficiency due to mutations in SOX2, a SOXB1-HMG box transcription factor. However, at present, the molecular or cellular mechanisms responsible for these conditions are poorly understood. Here, we directly assessed the requirement for SOX2 during eye development by generating a gene-dosage allelic series of Sox2 mutations in the mouse. The Sox2 mutant mice display a range of eye phenotypes consistent with human syndromes and the severity of these phenotypes directly relates to the levels of SOX2 expression found in progenitor cells of the neural retina. Retinal progenitor cells with conditionally ablated Sox2 lose competence to both proliferate and terminally differentiate. In contrast, in Sox2 hypomorphic/null mice, a reduction of SOX2 expression to
doi_str_mv 10.1101/gad.1407906
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1472477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67927146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-19ca45f0690ae304792851796daef1de482c377425920ebce1b8eec7cc2ce7b73</originalsourceid><addsrcrecordid>eNqFkUtLxDAURoMozvhYuZeu3EjHpE2TZiPI4JOBWajgLqTpba20SU1awX9vhik-Vq4u4R4-Tu6H0AnBC0IwuahVuSAUc4HZDpqTjIo4o5zvojnOBY5FysQMHXj_hjFmmLF9NCOMZYRlYo4eHtcvSdT4SEWl9RCX0IMpwQyRg3ps1WBdZKvwGBqj2sjA6MLona3BNJultl0PAxgNR2ivUq2H42keoueb66flXbxa394vr1axppwNMRFa0azCTGAFKaZcJHlGuGClgoqUQPNEp5zTJBMJhkIDKXIAzbVONPCCp4focpvbj0UHpQ6ywUn2rumU-5RWNfLvxjSvsrYfklCehMOEgLMpwNn3Efwgu8ZraFtlwI5esqDECWX_giRQwT0P4PkW1M5676D6tiFYbkqSoSQ5lRTo098f-GGnVtIv9xyOWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17148518</pqid></control><display><type>article</type><title>SOX2 is a dose-dependent regulator of retinal neural progenitor competence</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Taranova, Olena V ; Magness, Scott T ; Fagan, B Matthew ; Wu, Yongqin ; Surzenko, Natalie ; Hutton, Scott R ; Pevny, Larysa H</creator><creatorcontrib>Taranova, Olena V ; Magness, Scott T ; Fagan, B Matthew ; Wu, Yongqin ; Surzenko, Natalie ; Hutton, Scott R ; Pevny, Larysa H</creatorcontrib><description>Approximately 10% of humans with anophthalmia (absent eye) or severe microphthalmia (small eye) show haploid insufficiency due to mutations in SOX2, a SOXB1-HMG box transcription factor. However, at present, the molecular or cellular mechanisms responsible for these conditions are poorly understood. Here, we directly assessed the requirement for SOX2 during eye development by generating a gene-dosage allelic series of Sox2 mutations in the mouse. The Sox2 mutant mice display a range of eye phenotypes consistent with human syndromes and the severity of these phenotypes directly relates to the levels of SOX2 expression found in progenitor cells of the neural retina. Retinal progenitor cells with conditionally ablated Sox2 lose competence to both proliferate and terminally differentiate. In contrast, in Sox2 hypomorphic/null mice, a reduction of SOX2 expression to &lt;40% of normal causes variable microphthalmia as a result of aberrant neural progenitor differentiation. Furthermore, we provide genetic and molecular evidence that SOX2 activity, in a concentration-dependent manner, plays a key role in the regulation of the NOTCH1 signaling pathway in retinal progenitor cells. Collectively, these results show that precise regulation of SOX2 dosage is critical for temporal and spatial regulation of retinal progenitor cell differentiation and provide a cellular and molecular model for understanding how hypomorphic levels of SOX2 cause retinal defects in humans.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.1407906</identifier><identifier>PMID: 16651659</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Alleles ; Animals ; Anophthalmos - genetics ; Cell Differentiation ; Cell Proliferation ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - physiology ; Gene Dosage ; Mice ; Mice, Knockout ; Microphthalmos - genetics ; Mutation ; Neurons - metabolism ; Neurons - physiology ; Receptor, Notch1 - metabolism ; Research Paper ; Retina - abnormalities ; Retina - embryology ; Retina - metabolism ; Signal Transduction ; SOXB1 Transcription Factors ; Stem Cells - metabolism ; Stem Cells - physiology ; Trans-Activators - biosynthesis ; Trans-Activators - genetics ; Trans-Activators - physiology</subject><ispartof>Genes &amp; development, 2006-05, Vol.20 (9), p.1187-1202</ispartof><rights>Copyright © 2006, Cold Spring Harbor Laboratory Press 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-19ca45f0690ae304792851796daef1de482c377425920ebce1b8eec7cc2ce7b73</citedby><cites>FETCH-LOGICAL-c476t-19ca45f0690ae304792851796daef1de482c377425920ebce1b8eec7cc2ce7b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472477/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472477/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16651659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taranova, Olena V</creatorcontrib><creatorcontrib>Magness, Scott T</creatorcontrib><creatorcontrib>Fagan, B Matthew</creatorcontrib><creatorcontrib>Wu, Yongqin</creatorcontrib><creatorcontrib>Surzenko, Natalie</creatorcontrib><creatorcontrib>Hutton, Scott R</creatorcontrib><creatorcontrib>Pevny, Larysa H</creatorcontrib><title>SOX2 is a dose-dependent regulator of retinal neural progenitor competence</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Approximately 10% of humans with anophthalmia (absent eye) or severe microphthalmia (small eye) show haploid insufficiency due to mutations in SOX2, a SOXB1-HMG box transcription factor. However, at present, the molecular or cellular mechanisms responsible for these conditions are poorly understood. Here, we directly assessed the requirement for SOX2 during eye development by generating a gene-dosage allelic series of Sox2 mutations in the mouse. The Sox2 mutant mice display a range of eye phenotypes consistent with human syndromes and the severity of these phenotypes directly relates to the levels of SOX2 expression found in progenitor cells of the neural retina. Retinal progenitor cells with conditionally ablated Sox2 lose competence to both proliferate and terminally differentiate. In contrast, in Sox2 hypomorphic/null mice, a reduction of SOX2 expression to &lt;40% of normal causes variable microphthalmia as a result of aberrant neural progenitor differentiation. Furthermore, we provide genetic and molecular evidence that SOX2 activity, in a concentration-dependent manner, plays a key role in the regulation of the NOTCH1 signaling pathway in retinal progenitor cells. Collectively, these results show that precise regulation of SOX2 dosage is critical for temporal and spatial regulation of retinal progenitor cell differentiation and provide a cellular and molecular model for understanding how hypomorphic levels of SOX2 cause retinal defects in humans.</description><subject>Alleles</subject><subject>Animals</subject><subject>Anophthalmos - genetics</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Gene Dosage</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microphthalmos - genetics</subject><subject>Mutation</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Receptor, Notch1 - metabolism</subject><subject>Research Paper</subject><subject>Retina - abnormalities</subject><subject>Retina - embryology</subject><subject>Retina - metabolism</subject><subject>Signal Transduction</subject><subject>SOXB1 Transcription Factors</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - physiology</subject><subject>Trans-Activators - biosynthesis</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - physiology</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAURoMozvhYuZeu3EjHpE2TZiPI4JOBWajgLqTpba20SU1awX9vhik-Vq4u4R4-Tu6H0AnBC0IwuahVuSAUc4HZDpqTjIo4o5zvojnOBY5FysQMHXj_hjFmmLF9NCOMZYRlYo4eHtcvSdT4SEWl9RCX0IMpwQyRg3ps1WBdZKvwGBqj2sjA6MLona3BNJultl0PAxgNR2ivUq2H42keoueb66flXbxa394vr1axppwNMRFa0azCTGAFKaZcJHlGuGClgoqUQPNEp5zTJBMJhkIDKXIAzbVONPCCp4focpvbj0UHpQ6ywUn2rumU-5RWNfLvxjSvsrYfklCehMOEgLMpwNn3Efwgu8ZraFtlwI5esqDECWX_giRQwT0P4PkW1M5676D6tiFYbkqSoSQ5lRTo098f-GGnVtIv9xyOWg</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Taranova, Olena V</creator><creator>Magness, Scott T</creator><creator>Fagan, B Matthew</creator><creator>Wu, Yongqin</creator><creator>Surzenko, Natalie</creator><creator>Hutton, Scott R</creator><creator>Pevny, Larysa H</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060501</creationdate><title>SOX2 is a dose-dependent regulator of retinal neural progenitor competence</title><author>Taranova, Olena V ; Magness, Scott T ; Fagan, B Matthew ; Wu, Yongqin ; Surzenko, Natalie ; Hutton, Scott R ; Pevny, Larysa H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-19ca45f0690ae304792851796daef1de482c377425920ebce1b8eec7cc2ce7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Anophthalmos - genetics</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Gene Dosage</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microphthalmos - genetics</topic><topic>Mutation</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Receptor, Notch1 - metabolism</topic><topic>Research Paper</topic><topic>Retina - abnormalities</topic><topic>Retina - embryology</topic><topic>Retina - metabolism</topic><topic>Signal Transduction</topic><topic>SOXB1 Transcription Factors</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - physiology</topic><topic>Trans-Activators - biosynthesis</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taranova, Olena V</creatorcontrib><creatorcontrib>Magness, Scott T</creatorcontrib><creatorcontrib>Fagan, B Matthew</creatorcontrib><creatorcontrib>Wu, Yongqin</creatorcontrib><creatorcontrib>Surzenko, Natalie</creatorcontrib><creatorcontrib>Hutton, Scott R</creatorcontrib><creatorcontrib>Pevny, Larysa H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taranova, Olena V</au><au>Magness, Scott T</au><au>Fagan, B Matthew</au><au>Wu, Yongqin</au><au>Surzenko, Natalie</au><au>Hutton, Scott R</au><au>Pevny, Larysa H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOX2 is a dose-dependent regulator of retinal neural progenitor competence</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>20</volume><issue>9</issue><spage>1187</spage><epage>1202</epage><pages>1187-1202</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Approximately 10% of humans with anophthalmia (absent eye) or severe microphthalmia (small eye) show haploid insufficiency due to mutations in SOX2, a SOXB1-HMG box transcription factor. However, at present, the molecular or cellular mechanisms responsible for these conditions are poorly understood. Here, we directly assessed the requirement for SOX2 during eye development by generating a gene-dosage allelic series of Sox2 mutations in the mouse. The Sox2 mutant mice display a range of eye phenotypes consistent with human syndromes and the severity of these phenotypes directly relates to the levels of SOX2 expression found in progenitor cells of the neural retina. Retinal progenitor cells with conditionally ablated Sox2 lose competence to both proliferate and terminally differentiate. In contrast, in Sox2 hypomorphic/null mice, a reduction of SOX2 expression to &lt;40% of normal causes variable microphthalmia as a result of aberrant neural progenitor differentiation. Furthermore, we provide genetic and molecular evidence that SOX2 activity, in a concentration-dependent manner, plays a key role in the regulation of the NOTCH1 signaling pathway in retinal progenitor cells. Collectively, these results show that precise regulation of SOX2 dosage is critical for temporal and spatial regulation of retinal progenitor cell differentiation and provide a cellular and molecular model for understanding how hypomorphic levels of SOX2 cause retinal defects in humans.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>16651659</pmid><doi>10.1101/gad.1407906</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2006-05, Vol.20 (9), p.1187-1202
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1472477
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alleles
Animals
Anophthalmos - genetics
Cell Differentiation
Cell Proliferation
DNA-Binding Proteins - biosynthesis
DNA-Binding Proteins - genetics
DNA-Binding Proteins - physiology
Gene Dosage
Mice
Mice, Knockout
Microphthalmos - genetics
Mutation
Neurons - metabolism
Neurons - physiology
Receptor, Notch1 - metabolism
Research Paper
Retina - abnormalities
Retina - embryology
Retina - metabolism
Signal Transduction
SOXB1 Transcription Factors
Stem Cells - metabolism
Stem Cells - physiology
Trans-Activators - biosynthesis
Trans-Activators - genetics
Trans-Activators - physiology
title SOX2 is a dose-dependent regulator of retinal neural progenitor competence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOX2%20is%20a%20dose-dependent%20regulator%20of%20retinal%20neural%20progenitor%20competence&rft.jtitle=Genes%20&%20development&rft.au=Taranova,%20Olena%20V&rft.date=2006-05-01&rft.volume=20&rft.issue=9&rft.spage=1187&rft.epage=1202&rft.pages=1187-1202&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.1407906&rft_dat=%3Cproquest_pubme%3E67927146%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17148518&rft_id=info:pmid/16651659&rfr_iscdi=true