Advances in three-dimensional diagnostic radiology

The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of anatomy 1998-10, Vol.193 (3), p.363-371
Hauptverfasser: TER HAAR ROMENY, BART M., ZUIDERVELD, KAREL J., VAN WAES, PAUL F. G. M., VAN WALSUM, THEO, VAN DER WEIJDEN, REMKO, WEICKERT, JOACHIM, STOKKING, RIK, WINK, ONNO, KALITZIN, STILIYAN, MAINTZ, TWAN, ZONNEVELD, FRANS, VIERGEVER, MAX A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 3
container_start_page 363
container_title American journal of anatomy
container_volume 193
creator TER HAAR ROMENY, BART M.
ZUIDERVELD, KAREL J.
VAN WAES, PAUL F. G. M.
VAN WALSUM, THEO
VAN DER WEIJDEN, REMKO
WEICKERT, JOACHIM
STOKKING, RIK
WINK, ONNO
KALITZIN, STILIYAN
MAINTZ, TWAN
ZONNEVELD, FRANS
VIERGEVER, MAX A.
description The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as ‘image processing’ or ‘computer vision’ in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the ‘ray casting’ in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations (
doi_str_mv 10.1046/j.1469-7580.1998.19330363.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1467872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1046_j_1469_7580_1998_19330363_x</cupid><sourcerecordid>69116503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4753-8967f4103c6d5463fe6b8913d90c6362be37c2dd34cdfc0f4c546ebe827351703</originalsourceid><addsrcrecordid>eNqVUV9LwzAcDKLo_PMRhIHgW2fStEmDKIyhThH2os8hTX6dGW0zk226b2_K5tA3hZCQu_tdjgtCFwQPCM7Y1WxAMiYSnhcREKKIG6WYMjr43EM9kuc0wVzk-6iHMU4TQTA7QschzOK1SAU-RIei4DwVpIfSoVmpVkPo27a_ePMAibENtMG6VtV9Y9W0dWFhdd8rY13tputTdFCpOsDZ9jxBr_d3L6Nx8jx5eBwNnxOd8RihEIxXGcFUM5NnjFbAykIQagTWjLK0BMp1agzNtKk0rjIdVVBCkXKaE47pCbrd-M6XZQNGQ7vwqpZzbxvl19IpK38zrX2TU7eSsR1e8DQaXG4NvHtfQljIxgYNda1acMsgmSCE5ZhG4fVGqL0LwUO1e4Rg2VUuZ52pkF3lsqtcflcuP-P0-c-cu9ltx5Efb_gPW8P6P9byaTKMqwNkh0Srm21Q1ZTeminImVv6-FPhT1G_ABMmpfM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69116503</pqid></control><display><type>article</type><title>Advances in three-dimensional diagnostic radiology</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>TER HAAR ROMENY, BART M. ; ZUIDERVELD, KAREL J. ; VAN WAES, PAUL F. G. M. ; VAN WALSUM, THEO ; VAN DER WEIJDEN, REMKO ; WEICKERT, JOACHIM ; STOKKING, RIK ; WINK, ONNO ; KALITZIN, STILIYAN ; MAINTZ, TWAN ; ZONNEVELD, FRANS ; VIERGEVER, MAX A.</creator><creatorcontrib>TER HAAR ROMENY, BART M. ; ZUIDERVELD, KAREL J. ; VAN WAES, PAUL F. G. M. ; VAN WALSUM, THEO ; VAN DER WEIJDEN, REMKO ; WEICKERT, JOACHIM ; STOKKING, RIK ; WINK, ONNO ; KALITZIN, STILIYAN ; MAINTZ, TWAN ; ZONNEVELD, FRANS ; VIERGEVER, MAX A.</creatorcontrib><description>The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as ‘image processing’ or ‘computer vision’ in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the ‘ray casting’ in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations (&lt;$10000) allow this to be a reality. It is now possible to manipulate 3D images of 2563 at 15 frames per second interactively, placing virtual reality within reach. The possibilities of modern workstations become increasingly more sophisticated and versatile. Examples presented include the automatic detection of the optimal viewing angle of the neck of aneurysms and the simulation of the design and placement procedure of intra-abdominal aortic stents. Such developments, together with the availability of high-resolution datasets of modern scanners and data such as from the NIH Visible Human project, have a dramatic impact on interactive 3D anatomical atlases.</description><identifier>ISSN: 0002-9106</identifier><identifier>ISSN: 0021-8782</identifier><identifier>EISSN: 1553-0795</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1046/j.1469-7580.1998.19330363.x</identifier><identifier>PMID: 9877291</identifier><language>eng</language><publisher>Edinburgh, UK: Cambridge University Press</publisher><subject>computer assisted radiology ; Humans ; image processing ; Radiographic Image Enhancement - trends ; Review ; Volume visualisation</subject><ispartof>American journal of anatomy, 1998-10, Vol.193 (3), p.363-371</ispartof><rights>Anatomical Society of Great Britain and Ireland 1998</rights><rights>1998 Anatomical Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4753-8967f4103c6d5463fe6b8913d90c6362be37c2dd34cdfc0f4c546ebe827351703</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1467872/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1467872/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9877291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TER HAAR ROMENY, BART M.</creatorcontrib><creatorcontrib>ZUIDERVELD, KAREL J.</creatorcontrib><creatorcontrib>VAN WAES, PAUL F. G. M.</creatorcontrib><creatorcontrib>VAN WALSUM, THEO</creatorcontrib><creatorcontrib>VAN DER WEIJDEN, REMKO</creatorcontrib><creatorcontrib>WEICKERT, JOACHIM</creatorcontrib><creatorcontrib>STOKKING, RIK</creatorcontrib><creatorcontrib>WINK, ONNO</creatorcontrib><creatorcontrib>KALITZIN, STILIYAN</creatorcontrib><creatorcontrib>MAINTZ, TWAN</creatorcontrib><creatorcontrib>ZONNEVELD, FRANS</creatorcontrib><creatorcontrib>VIERGEVER, MAX A.</creatorcontrib><title>Advances in three-dimensional diagnostic radiology</title><title>American journal of anatomy</title><addtitle>Am. j. anat</addtitle><description>The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as ‘image processing’ or ‘computer vision’ in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the ‘ray casting’ in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations (&lt;$10000) allow this to be a reality. It is now possible to manipulate 3D images of 2563 at 15 frames per second interactively, placing virtual reality within reach. The possibilities of modern workstations become increasingly more sophisticated and versatile. Examples presented include the automatic detection of the optimal viewing angle of the neck of aneurysms and the simulation of the design and placement procedure of intra-abdominal aortic stents. Such developments, together with the availability of high-resolution datasets of modern scanners and data such as from the NIH Visible Human project, have a dramatic impact on interactive 3D anatomical atlases.</description><subject>computer assisted radiology</subject><subject>Humans</subject><subject>image processing</subject><subject>Radiographic Image Enhancement - trends</subject><subject>Review</subject><subject>Volume visualisation</subject><issn>0002-9106</issn><issn>0021-8782</issn><issn>1553-0795</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVUV9LwzAcDKLo_PMRhIHgW2fStEmDKIyhThH2os8hTX6dGW0zk226b2_K5tA3hZCQu_tdjgtCFwQPCM7Y1WxAMiYSnhcREKKIG6WYMjr43EM9kuc0wVzk-6iHMU4TQTA7QschzOK1SAU-RIei4DwVpIfSoVmpVkPo27a_ePMAibENtMG6VtV9Y9W0dWFhdd8rY13tputTdFCpOsDZ9jxBr_d3L6Nx8jx5eBwNnxOd8RihEIxXGcFUM5NnjFbAykIQagTWjLK0BMp1agzNtKk0rjIdVVBCkXKaE47pCbrd-M6XZQNGQ7vwqpZzbxvl19IpK38zrX2TU7eSsR1e8DQaXG4NvHtfQljIxgYNda1acMsgmSCE5ZhG4fVGqL0LwUO1e4Rg2VUuZ52pkF3lsqtcflcuP-P0-c-cu9ltx5Efb_gPW8P6P9byaTKMqwNkh0Srm21Q1ZTeminImVv6-FPhT1G_ABMmpfM</recordid><startdate>199810</startdate><enddate>199810</enddate><creator>TER HAAR ROMENY, BART M.</creator><creator>ZUIDERVELD, KAREL J.</creator><creator>VAN WAES, PAUL F. G. M.</creator><creator>VAN WALSUM, THEO</creator><creator>VAN DER WEIJDEN, REMKO</creator><creator>WEICKERT, JOACHIM</creator><creator>STOKKING, RIK</creator><creator>WINK, ONNO</creator><creator>KALITZIN, STILIYAN</creator><creator>MAINTZ, TWAN</creator><creator>ZONNEVELD, FRANS</creator><creator>VIERGEVER, MAX A.</creator><general>Cambridge University Press</general><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199810</creationdate><title>Advances in three-dimensional diagnostic radiology</title><author>TER HAAR ROMENY, BART M. ; ZUIDERVELD, KAREL J. ; VAN WAES, PAUL F. G. M. ; VAN WALSUM, THEO ; VAN DER WEIJDEN, REMKO ; WEICKERT, JOACHIM ; STOKKING, RIK ; WINK, ONNO ; KALITZIN, STILIYAN ; MAINTZ, TWAN ; ZONNEVELD, FRANS ; VIERGEVER, MAX A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4753-8967f4103c6d5463fe6b8913d90c6362be37c2dd34cdfc0f4c546ebe827351703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>computer assisted radiology</topic><topic>Humans</topic><topic>image processing</topic><topic>Radiographic Image Enhancement - trends</topic><topic>Review</topic><topic>Volume visualisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TER HAAR ROMENY, BART M.</creatorcontrib><creatorcontrib>ZUIDERVELD, KAREL J.</creatorcontrib><creatorcontrib>VAN WAES, PAUL F. G. M.</creatorcontrib><creatorcontrib>VAN WALSUM, THEO</creatorcontrib><creatorcontrib>VAN DER WEIJDEN, REMKO</creatorcontrib><creatorcontrib>WEICKERT, JOACHIM</creatorcontrib><creatorcontrib>STOKKING, RIK</creatorcontrib><creatorcontrib>WINK, ONNO</creatorcontrib><creatorcontrib>KALITZIN, STILIYAN</creatorcontrib><creatorcontrib>MAINTZ, TWAN</creatorcontrib><creatorcontrib>ZONNEVELD, FRANS</creatorcontrib><creatorcontrib>VIERGEVER, MAX A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TER HAAR ROMENY, BART M.</au><au>ZUIDERVELD, KAREL J.</au><au>VAN WAES, PAUL F. G. M.</au><au>VAN WALSUM, THEO</au><au>VAN DER WEIJDEN, REMKO</au><au>WEICKERT, JOACHIM</au><au>STOKKING, RIK</au><au>WINK, ONNO</au><au>KALITZIN, STILIYAN</au><au>MAINTZ, TWAN</au><au>ZONNEVELD, FRANS</au><au>VIERGEVER, MAX A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in three-dimensional diagnostic radiology</atitle><jtitle>American journal of anatomy</jtitle><addtitle>Am. j. anat</addtitle><date>1998-10</date><risdate>1998</risdate><volume>193</volume><issue>3</issue><spage>363</spage><epage>371</epage><pages>363-371</pages><issn>0002-9106</issn><issn>0021-8782</issn><eissn>1553-0795</eissn><eissn>1469-7580</eissn><abstract>The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as ‘image processing’ or ‘computer vision’ in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the ‘ray casting’ in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations (&lt;$10000) allow this to be a reality. It is now possible to manipulate 3D images of 2563 at 15 frames per second interactively, placing virtual reality within reach. The possibilities of modern workstations become increasingly more sophisticated and versatile. Examples presented include the automatic detection of the optimal viewing angle of the neck of aneurysms and the simulation of the design and placement procedure of intra-abdominal aortic stents. Such developments, together with the availability of high-resolution datasets of modern scanners and data such as from the NIH Visible Human project, have a dramatic impact on interactive 3D anatomical atlases.</abstract><cop>Edinburgh, UK</cop><pub>Cambridge University Press</pub><pmid>9877291</pmid><doi>10.1046/j.1469-7580.1998.19330363.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9106
ispartof American journal of anatomy, 1998-10, Vol.193 (3), p.363-371
issn 0002-9106
0021-8782
1553-0795
1469-7580
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1467872
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central; Alma/SFX Local Collection
subjects computer assisted radiology
Humans
image processing
Radiographic Image Enhancement - trends
Review
Volume visualisation
title Advances in three-dimensional diagnostic radiology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20three-dimensional%20diagnostic%20radiology&rft.jtitle=American%20journal%20of%20anatomy&rft.au=TER%20HAAR%20ROMENY,%20BART%20M.&rft.date=1998-10&rft.volume=193&rft.issue=3&rft.spage=363&rft.epage=371&rft.pages=363-371&rft.issn=0002-9106&rft.eissn=1553-0795&rft_id=info:doi/10.1046/j.1469-7580.1998.19330363.x&rft_dat=%3Cproquest_pubme%3E69116503%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69116503&rft_id=info:pmid/9877291&rft_cupid=10_1046_j_1469_7580_1998_19330363_x&rfr_iscdi=true