Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes

A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2002-11, Vol.162 (3), p.1423-1434
Hauptverfasser: Menéndez, Cristina M, Ritter, Enrique, Schäfer-Pregl, Ralf, Walkemeier, Birgit, Kalde, Alexandra, Salamini, Francesco, Gebhardt, Christiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1434
container_issue 3
container_start_page 1423
container_title Genetics (Austin)
container_volume 162
creator Menéndez, Cristina M
Ritter, Enrique
Schäfer-Pregl, Ralf
Walkemeier, Birgit
Kalde, Alexandra
Salamini, Francesco
Gebhardt, Christiane
description A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining >10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.
doi_str_mv 10.1093/genetics/162.3.1423
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18623251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-12779a32d83b508d116a272ef4933f259c2033d5fe78ab0c76be88c69119894e3</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTs_oLxAkuHBXPbl5VeJCkMZRYcCNug3pJNVmqE5qKqkR_70ppn1u3ORC7rknJ_dD6BmQLRDNLg8hhRpduQRJt2wLnLIHaAOas45KBg_RhhCQnewZnKHzUm4IIVIL9RidAeWCEyU26Msujx6XbyHUkGI64Jiwj9OYo8dTrrbmV_hop2lt3S421dju4l3Adbax4jG7iG3y2LUjelsDXmOVJ-jRYMcSnp7qBfp89fbT7n13_fHdh92b685xoWsHtO-1ZdQrthdEeQBpaU_DwDVjAxXaUcKYF0Pold0T18t9UMpJDaCV5oFdoNf3vtOyPwbvQmq5RjPN8Wjn7ybbaP7upPjVHPKdAS4pE6QZvDwZzPl2CaWaYywujKNNIS_F9LQHoQX9rxBUM6QCmvDFP8KbvMypbcFQ4ACKqfVZdi9ycy5lDsOvyEDMStf8pGsaXcPMSrdNPf_zt79nTjjZD--Vox8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214118380</pqid></control><display><type>article</type><title>Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Menéndez, Cristina M ; Ritter, Enrique ; Schäfer-Pregl, Ralf ; Walkemeier, Birgit ; Kalde, Alexandra ; Salamini, Francesco ; Gebhardt, Christiane</creator><creatorcontrib>Menéndez, Cristina M ; Ritter, Enrique ; Schäfer-Pregl, Ralf ; Walkemeier, Birgit ; Kalde, Alexandra ; Salamini, Francesco ; Gebhardt, Christiane</creatorcontrib><description>A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining &gt;10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/162.3.1423</identifier><identifier>PMID: 12454085</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Carbohydrate Metabolism ; Chromosome Mapping ; Cold Temperature ; Diploidy ; Genetics ; Metabolism ; Potatoes ; Quantitative Trait Loci ; Solanum tuberosum - genetics ; Solanum tuberosum - metabolism ; Sugar</subject><ispartof>Genetics (Austin), 2002-11, Vol.162 (3), p.1423-1434</ispartof><rights>Copyright Genetics Society of America Nov 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-12779a32d83b508d116a272ef4933f259c2033d5fe78ab0c76be88c69119894e3</citedby><cites>FETCH-LOGICAL-c459t-12779a32d83b508d116a272ef4933f259c2033d5fe78ab0c76be88c69119894e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12454085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menéndez, Cristina M</creatorcontrib><creatorcontrib>Ritter, Enrique</creatorcontrib><creatorcontrib>Schäfer-Pregl, Ralf</creatorcontrib><creatorcontrib>Walkemeier, Birgit</creatorcontrib><creatorcontrib>Kalde, Alexandra</creatorcontrib><creatorcontrib>Salamini, Francesco</creatorcontrib><creatorcontrib>Gebhardt, Christiane</creatorcontrib><title>Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining &gt;10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.</description><subject>Carbohydrate Metabolism</subject><subject>Chromosome Mapping</subject><subject>Cold Temperature</subject><subject>Diploidy</subject><subject>Genetics</subject><subject>Metabolism</subject><subject>Potatoes</subject><subject>Quantitative Trait Loci</subject><subject>Solanum tuberosum - genetics</subject><subject>Solanum tuberosum - metabolism</subject><subject>Sugar</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEUhYMoTs_oLxAkuHBXPbl5VeJCkMZRYcCNug3pJNVmqE5qKqkR_70ppn1u3ORC7rknJ_dD6BmQLRDNLg8hhRpduQRJt2wLnLIHaAOas45KBg_RhhCQnewZnKHzUm4IIVIL9RidAeWCEyU26Msujx6XbyHUkGI64Jiwj9OYo8dTrrbmV_hop2lt3S421dju4l3Adbax4jG7iG3y2LUjelsDXmOVJ-jRYMcSnp7qBfp89fbT7n13_fHdh92b685xoWsHtO-1ZdQrthdEeQBpaU_DwDVjAxXaUcKYF0Pold0T18t9UMpJDaCV5oFdoNf3vtOyPwbvQmq5RjPN8Wjn7ybbaP7upPjVHPKdAS4pE6QZvDwZzPl2CaWaYywujKNNIS_F9LQHoQX9rxBUM6QCmvDFP8KbvMypbcFQ4ACKqfVZdi9ycy5lDsOvyEDMStf8pGsaXcPMSrdNPf_zt79nTjjZD--Vox8</recordid><startdate>200211</startdate><enddate>200211</enddate><creator>Menéndez, Cristina M</creator><creator>Ritter, Enrique</creator><creator>Schäfer-Pregl, Ralf</creator><creator>Walkemeier, Birgit</creator><creator>Kalde, Alexandra</creator><creator>Salamini, Francesco</creator><creator>Gebhardt, Christiane</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200211</creationdate><title>Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes</title><author>Menéndez, Cristina M ; Ritter, Enrique ; Schäfer-Pregl, Ralf ; Walkemeier, Birgit ; Kalde, Alexandra ; Salamini, Francesco ; Gebhardt, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-12779a32d83b508d116a272ef4933f259c2033d5fe78ab0c76be88c69119894e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Carbohydrate Metabolism</topic><topic>Chromosome Mapping</topic><topic>Cold Temperature</topic><topic>Diploidy</topic><topic>Genetics</topic><topic>Metabolism</topic><topic>Potatoes</topic><topic>Quantitative Trait Loci</topic><topic>Solanum tuberosum - genetics</topic><topic>Solanum tuberosum - metabolism</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menéndez, Cristina M</creatorcontrib><creatorcontrib>Ritter, Enrique</creatorcontrib><creatorcontrib>Schäfer-Pregl, Ralf</creatorcontrib><creatorcontrib>Walkemeier, Birgit</creatorcontrib><creatorcontrib>Kalde, Alexandra</creatorcontrib><creatorcontrib>Salamini, Francesco</creatorcontrib><creatorcontrib>Gebhardt, Christiane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menéndez, Cristina M</au><au>Ritter, Enrique</au><au>Schäfer-Pregl, Ralf</au><au>Walkemeier, Birgit</au><au>Kalde, Alexandra</au><au>Salamini, Francesco</au><au>Gebhardt, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2002-11</date><risdate>2002</risdate><volume>162</volume><issue>3</issue><spage>1423</spage><epage>1434</epage><pages>1423-1434</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining &gt;10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>12454085</pmid><doi>10.1093/genetics/162.3.1423</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2002-11, Vol.162 (3), p.1423-1434
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462350
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Carbohydrate Metabolism
Chromosome Mapping
Cold Temperature
Diploidy
Genetics
Metabolism
Potatoes
Quantitative Trait Loci
Solanum tuberosum - genetics
Solanum tuberosum - metabolism
Sugar
title Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20sweetening%20in%20diploid%20potato:%20mapping%20quantitative%20trait%20loci%20and%20candidate%20genes&rft.jtitle=Genetics%20(Austin)&rft.au=Men%C3%A9ndez,%20Cristina%20M&rft.date=2002-11&rft.volume=162&rft.issue=3&rft.spage=1423&rft.epage=1434&rft.pages=1423-1434&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/162.3.1423&rft_dat=%3Cproquest_pubme%3E18623251%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214118380&rft_id=info:pmid/12454085&rfr_iscdi=true