Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes
A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of th...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2002-11, Vol.162 (3), p.1423-1434 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1434 |
---|---|
container_issue | 3 |
container_start_page | 1423 |
container_title | Genetics (Austin) |
container_volume | 162 |
creator | Menéndez, Cristina M Ritter, Enrique Schäfer-Pregl, Ralf Walkemeier, Birgit Kalde, Alexandra Salamini, Francesco Gebhardt, Christiane |
description | A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining >10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening. |
doi_str_mv | 10.1093/genetics/162.3.1423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18623251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-12779a32d83b508d116a272ef4933f259c2033d5fe78ab0c76be88c69119894e3</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTs_oLxAkuHBXPbl5VeJCkMZRYcCNug3pJNVmqE5qKqkR_70ppn1u3ORC7rknJ_dD6BmQLRDNLg8hhRpduQRJt2wLnLIHaAOas45KBg_RhhCQnewZnKHzUm4IIVIL9RidAeWCEyU26Msujx6XbyHUkGI64Jiwj9OYo8dTrrbmV_hop2lt3S421dju4l3Adbax4jG7iG3y2LUjelsDXmOVJ-jRYMcSnp7qBfp89fbT7n13_fHdh92b685xoWsHtO-1ZdQrthdEeQBpaU_DwDVjAxXaUcKYF0Pold0T18t9UMpJDaCV5oFdoNf3vtOyPwbvQmq5RjPN8Wjn7ybbaP7upPjVHPKdAS4pE6QZvDwZzPl2CaWaYywujKNNIS_F9LQHoQX9rxBUM6QCmvDFP8KbvMypbcFQ4ACKqfVZdi9ycy5lDsOvyEDMStf8pGsaXcPMSrdNPf_zt79nTjjZD--Vox8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214118380</pqid></control><display><type>article</type><title>Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Menéndez, Cristina M ; Ritter, Enrique ; Schäfer-Pregl, Ralf ; Walkemeier, Birgit ; Kalde, Alexandra ; Salamini, Francesco ; Gebhardt, Christiane</creator><creatorcontrib>Menéndez, Cristina M ; Ritter, Enrique ; Schäfer-Pregl, Ralf ; Walkemeier, Birgit ; Kalde, Alexandra ; Salamini, Francesco ; Gebhardt, Christiane</creatorcontrib><description>A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining >10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/162.3.1423</identifier><identifier>PMID: 12454085</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Carbohydrate Metabolism ; Chromosome Mapping ; Cold Temperature ; Diploidy ; Genetics ; Metabolism ; Potatoes ; Quantitative Trait Loci ; Solanum tuberosum - genetics ; Solanum tuberosum - metabolism ; Sugar</subject><ispartof>Genetics (Austin), 2002-11, Vol.162 (3), p.1423-1434</ispartof><rights>Copyright Genetics Society of America Nov 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-12779a32d83b508d116a272ef4933f259c2033d5fe78ab0c76be88c69119894e3</citedby><cites>FETCH-LOGICAL-c459t-12779a32d83b508d116a272ef4933f259c2033d5fe78ab0c76be88c69119894e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12454085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menéndez, Cristina M</creatorcontrib><creatorcontrib>Ritter, Enrique</creatorcontrib><creatorcontrib>Schäfer-Pregl, Ralf</creatorcontrib><creatorcontrib>Walkemeier, Birgit</creatorcontrib><creatorcontrib>Kalde, Alexandra</creatorcontrib><creatorcontrib>Salamini, Francesco</creatorcontrib><creatorcontrib>Gebhardt, Christiane</creatorcontrib><title>Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining >10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.</description><subject>Carbohydrate Metabolism</subject><subject>Chromosome Mapping</subject><subject>Cold Temperature</subject><subject>Diploidy</subject><subject>Genetics</subject><subject>Metabolism</subject><subject>Potatoes</subject><subject>Quantitative Trait Loci</subject><subject>Solanum tuberosum - genetics</subject><subject>Solanum tuberosum - metabolism</subject><subject>Sugar</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEUhYMoTs_oLxAkuHBXPbl5VeJCkMZRYcCNug3pJNVmqE5qKqkR_70ppn1u3ORC7rknJ_dD6BmQLRDNLg8hhRpduQRJt2wLnLIHaAOas45KBg_RhhCQnewZnKHzUm4IIVIL9RidAeWCEyU26Msujx6XbyHUkGI64Jiwj9OYo8dTrrbmV_hop2lt3S421dju4l3Adbax4jG7iG3y2LUjelsDXmOVJ-jRYMcSnp7qBfp89fbT7n13_fHdh92b685xoWsHtO-1ZdQrthdEeQBpaU_DwDVjAxXaUcKYF0Pold0T18t9UMpJDaCV5oFdoNf3vtOyPwbvQmq5RjPN8Wjn7ybbaP7upPjVHPKdAS4pE6QZvDwZzPl2CaWaYywujKNNIS_F9LQHoQX9rxBUM6QCmvDFP8KbvMypbcFQ4ACKqfVZdi9ycy5lDsOvyEDMStf8pGsaXcPMSrdNPf_zt79nTjjZD--Vox8</recordid><startdate>200211</startdate><enddate>200211</enddate><creator>Menéndez, Cristina M</creator><creator>Ritter, Enrique</creator><creator>Schäfer-Pregl, Ralf</creator><creator>Walkemeier, Birgit</creator><creator>Kalde, Alexandra</creator><creator>Salamini, Francesco</creator><creator>Gebhardt, Christiane</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200211</creationdate><title>Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes</title><author>Menéndez, Cristina M ; Ritter, Enrique ; Schäfer-Pregl, Ralf ; Walkemeier, Birgit ; Kalde, Alexandra ; Salamini, Francesco ; Gebhardt, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-12779a32d83b508d116a272ef4933f259c2033d5fe78ab0c76be88c69119894e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Carbohydrate Metabolism</topic><topic>Chromosome Mapping</topic><topic>Cold Temperature</topic><topic>Diploidy</topic><topic>Genetics</topic><topic>Metabolism</topic><topic>Potatoes</topic><topic>Quantitative Trait Loci</topic><topic>Solanum tuberosum - genetics</topic><topic>Solanum tuberosum - metabolism</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menéndez, Cristina M</creatorcontrib><creatorcontrib>Ritter, Enrique</creatorcontrib><creatorcontrib>Schäfer-Pregl, Ralf</creatorcontrib><creatorcontrib>Walkemeier, Birgit</creatorcontrib><creatorcontrib>Kalde, Alexandra</creatorcontrib><creatorcontrib>Salamini, Francesco</creatorcontrib><creatorcontrib>Gebhardt, Christiane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menéndez, Cristina M</au><au>Ritter, Enrique</au><au>Schäfer-Pregl, Ralf</au><au>Walkemeier, Birgit</au><au>Kalde, Alexandra</au><au>Salamini, Francesco</au><au>Gebhardt, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2002-11</date><risdate>2002</risdate><volume>162</volume><issue>3</issue><spage>1423</spage><epage>1434</epage><pages>1423-1434</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining >10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>12454085</pmid><doi>10.1093/genetics/162.3.1423</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2002-11, Vol.162 (3), p.1423-1434 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462350 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Carbohydrate Metabolism Chromosome Mapping Cold Temperature Diploidy Genetics Metabolism Potatoes Quantitative Trait Loci Solanum tuberosum - genetics Solanum tuberosum - metabolism Sugar |
title | Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20sweetening%20in%20diploid%20potato:%20mapping%20quantitative%20trait%20loci%20and%20candidate%20genes&rft.jtitle=Genetics%20(Austin)&rft.au=Men%C3%A9ndez,%20Cristina%20M&rft.date=2002-11&rft.volume=162&rft.issue=3&rft.spage=1423&rft.epage=1434&rft.pages=1423-1434&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/162.3.1423&rft_dat=%3Cproquest_pubme%3E18623251%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214118380&rft_id=info:pmid/12454085&rfr_iscdi=true |