Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data

Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2002-07, Vol.161 (3), p.1307-1320
Hauptverfasser: Drummond, Alexei J, Nicholls, Geoff K, Rodrigo, Allen G, Solomon, Wiremu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1320
container_issue 3
container_start_page 1307
container_title Genetics (Austin)
container_volume 161
creator Drummond, Alexei J
Nicholls, Geoff K
Rodrigo, Allen G
Solomon, Wiremu
description Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.
doi_str_mv 10.1093/genetics/161.3.1307
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>155443991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-40eceaeaae891560a34e66cbc56d7244e78923709ffa82bec6baf5ddf57b06383</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EosPAL0BCZkM3ZOobJ06yQUJ9IhVRacracpybjKskntoOo_n3eJQBChtWfn33-J57CHkLbAWs4mcdjhiM9mcgYMVXwFnxjCygyniSCg7PyYIxEIkoOJyQV94_MMZElZcvyQmkwAXj6YKESx_MoIIZO_p1CnFjR3qnnBowoPMf6Z3dTv18fWN8sG5P1djQ6_i56m23p2szTH1QI9rJ93t65exA73HYWqf6eF5vlcaGrvFxwlEjvVBBvSYvWtV7fHNcl-T71eX9-U1y--36y_nn20TnuQhJxlCjQqWwrCAXTPEMhdC1zkVTpFmGRVmlvGBV26oyrVGLWrV507R5UTPBS74kn2bd7VQP2GgcQ2xKbl107PbSKiP_fhnNRnb2h4RMpFAeBD4cBZyN_fsgB-M19v1sVxZx2iCy_4NQZhxYjGJJ3v8DPtjJjXEKMprMWFWJyPCZ0c5677D93TEweYhe_opexugll4foY9W7p2b_1ByzjsDpDGxMt9kZh9IPMaKIg9ztdk-kfgKTGL10</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>89140996</pqid></control><display><type>article</type><title>Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Drummond, Alexei J ; Nicholls, Geoff K ; Rodrigo, Allen G ; Solomon, Wiremu</creator><creatorcontrib>Drummond, Alexei J ; Nicholls, Geoff K ; Rodrigo, Allen G ; Solomon, Wiremu</creatorcontrib><description>Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/161.3.1307</identifier><identifier>PMID: 12136032</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Decision Trees ; Genealogy ; Genealogy and Heraldry ; Genetics, Population ; Genomics ; Markov Chains ; Models, Genetic ; Monte Carlo Method ; Mutation ; Population ; Predictions ; Time</subject><ispartof>Genetics (Austin), 2002-07, Vol.161 (3), p.1307-1320</ispartof><rights>Copyright Genetics Society of America Jul 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-40eceaeaae891560a34e66cbc56d7244e78923709ffa82bec6baf5ddf57b06383</citedby><cites>FETCH-LOGICAL-c556t-40eceaeaae891560a34e66cbc56d7244e78923709ffa82bec6baf5ddf57b06383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12136032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drummond, Alexei J</creatorcontrib><creatorcontrib>Nicholls, Geoff K</creatorcontrib><creatorcontrib>Rodrigo, Allen G</creatorcontrib><creatorcontrib>Solomon, Wiremu</creatorcontrib><title>Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.</description><subject>Decision Trees</subject><subject>Genealogy</subject><subject>Genealogy and Heraldry</subject><subject>Genetics, Population</subject><subject>Genomics</subject><subject>Markov Chains</subject><subject>Models, Genetic</subject><subject>Monte Carlo Method</subject><subject>Mutation</subject><subject>Population</subject><subject>Predictions</subject><subject>Time</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EosPAL0BCZkM3ZOobJ06yQUJ9IhVRacracpybjKskntoOo_n3eJQBChtWfn33-J57CHkLbAWs4mcdjhiM9mcgYMVXwFnxjCygyniSCg7PyYIxEIkoOJyQV94_MMZElZcvyQmkwAXj6YKESx_MoIIZO_p1CnFjR3qnnBowoPMf6Z3dTv18fWN8sG5P1djQ6_i56m23p2szTH1QI9rJ93t65exA73HYWqf6eF5vlcaGrvFxwlEjvVBBvSYvWtV7fHNcl-T71eX9-U1y--36y_nn20TnuQhJxlCjQqWwrCAXTPEMhdC1zkVTpFmGRVmlvGBV26oyrVGLWrV507R5UTPBS74kn2bd7VQP2GgcQ2xKbl107PbSKiP_fhnNRnb2h4RMpFAeBD4cBZyN_fsgB-M19v1sVxZx2iCy_4NQZhxYjGJJ3v8DPtjJjXEKMprMWFWJyPCZ0c5677D93TEweYhe_opexugll4foY9W7p2b_1ByzjsDpDGxMt9kZh9IPMaKIg9ztdk-kfgKTGL10</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Drummond, Alexei J</creator><creator>Nicholls, Geoff K</creator><creator>Rodrigo, Allen G</creator><creator>Solomon, Wiremu</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020701</creationdate><title>Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data</title><author>Drummond, Alexei J ; Nicholls, Geoff K ; Rodrigo, Allen G ; Solomon, Wiremu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-40eceaeaae891560a34e66cbc56d7244e78923709ffa82bec6baf5ddf57b06383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Decision Trees</topic><topic>Genealogy</topic><topic>Genealogy and Heraldry</topic><topic>Genetics, Population</topic><topic>Genomics</topic><topic>Markov Chains</topic><topic>Models, Genetic</topic><topic>Monte Carlo Method</topic><topic>Mutation</topic><topic>Population</topic><topic>Predictions</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drummond, Alexei J</creatorcontrib><creatorcontrib>Nicholls, Geoff K</creatorcontrib><creatorcontrib>Rodrigo, Allen G</creatorcontrib><creatorcontrib>Solomon, Wiremu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drummond, Alexei J</au><au>Nicholls, Geoff K</au><au>Rodrigo, Allen G</au><au>Solomon, Wiremu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>161</volume><issue>3</issue><spage>1307</spage><epage>1320</epage><pages>1307-1320</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>12136032</pmid><doi>10.1093/genetics/161.3.1307</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2002-07, Vol.161 (3), p.1307-1320
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462188
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Decision Trees
Genealogy
Genealogy and Heraldry
Genetics, Population
Genomics
Markov Chains
Models, Genetic
Monte Carlo Method
Mutation
Population
Predictions
Time
title Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Mutation%20Parameters,%20Population%20History%20and%20Genealogy%20Simultaneously%20From%20Temporally%20Spaced%20Sequence%20Data&rft.jtitle=Genetics%20(Austin)&rft.au=Drummond,%20Alexei%20J&rft.date=2002-07-01&rft.volume=161&rft.issue=3&rft.spage=1307&rft.epage=1320&rft.pages=1307-1320&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/161.3.1307&rft_dat=%3Cproquest_pubme%3E155443991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=89140996&rft_id=info:pmid/12136032&rfr_iscdi=true