Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mu...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2002-07, Vol.161 (3), p.1307-1320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1320 |
---|---|
container_issue | 3 |
container_start_page | 1307 |
container_title | Genetics (Austin) |
container_volume | 161 |
creator | Drummond, Alexei J Nicholls, Geoff K Rodrigo, Allen G Solomon, Wiremu |
description | Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. |
doi_str_mv | 10.1093/genetics/161.3.1307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>155443991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-40eceaeaae891560a34e66cbc56d7244e78923709ffa82bec6baf5ddf57b06383</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EosPAL0BCZkM3ZOobJ06yQUJ9IhVRacracpybjKskntoOo_n3eJQBChtWfn33-J57CHkLbAWs4mcdjhiM9mcgYMVXwFnxjCygyniSCg7PyYIxEIkoOJyQV94_MMZElZcvyQmkwAXj6YKESx_MoIIZO_p1CnFjR3qnnBowoPMf6Z3dTv18fWN8sG5P1djQ6_i56m23p2szTH1QI9rJ93t65exA73HYWqf6eF5vlcaGrvFxwlEjvVBBvSYvWtV7fHNcl-T71eX9-U1y--36y_nn20TnuQhJxlCjQqWwrCAXTPEMhdC1zkVTpFmGRVmlvGBV26oyrVGLWrV507R5UTPBS74kn2bd7VQP2GgcQ2xKbl107PbSKiP_fhnNRnb2h4RMpFAeBD4cBZyN_fsgB-M19v1sVxZx2iCy_4NQZhxYjGJJ3v8DPtjJjXEKMprMWFWJyPCZ0c5677D93TEweYhe_opexugll4foY9W7p2b_1ByzjsDpDGxMt9kZh9IPMaKIg9ztdk-kfgKTGL10</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>89140996</pqid></control><display><type>article</type><title>Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Drummond, Alexei J ; Nicholls, Geoff K ; Rodrigo, Allen G ; Solomon, Wiremu</creator><creatorcontrib>Drummond, Alexei J ; Nicholls, Geoff K ; Rodrigo, Allen G ; Solomon, Wiremu</creatorcontrib><description>Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/161.3.1307</identifier><identifier>PMID: 12136032</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Decision Trees ; Genealogy ; Genealogy and Heraldry ; Genetics, Population ; Genomics ; Markov Chains ; Models, Genetic ; Monte Carlo Method ; Mutation ; Population ; Predictions ; Time</subject><ispartof>Genetics (Austin), 2002-07, Vol.161 (3), p.1307-1320</ispartof><rights>Copyright Genetics Society of America Jul 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-40eceaeaae891560a34e66cbc56d7244e78923709ffa82bec6baf5ddf57b06383</citedby><cites>FETCH-LOGICAL-c556t-40eceaeaae891560a34e66cbc56d7244e78923709ffa82bec6baf5ddf57b06383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12136032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drummond, Alexei J</creatorcontrib><creatorcontrib>Nicholls, Geoff K</creatorcontrib><creatorcontrib>Rodrigo, Allen G</creatorcontrib><creatorcontrib>Solomon, Wiremu</creatorcontrib><title>Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.</description><subject>Decision Trees</subject><subject>Genealogy</subject><subject>Genealogy and Heraldry</subject><subject>Genetics, Population</subject><subject>Genomics</subject><subject>Markov Chains</subject><subject>Models, Genetic</subject><subject>Monte Carlo Method</subject><subject>Mutation</subject><subject>Population</subject><subject>Predictions</subject><subject>Time</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EosPAL0BCZkM3ZOobJ06yQUJ9IhVRacracpybjKskntoOo_n3eJQBChtWfn33-J57CHkLbAWs4mcdjhiM9mcgYMVXwFnxjCygyniSCg7PyYIxEIkoOJyQV94_MMZElZcvyQmkwAXj6YKESx_MoIIZO_p1CnFjR3qnnBowoPMf6Z3dTv18fWN8sG5P1djQ6_i56m23p2szTH1QI9rJ93t65exA73HYWqf6eF5vlcaGrvFxwlEjvVBBvSYvWtV7fHNcl-T71eX9-U1y--36y_nn20TnuQhJxlCjQqWwrCAXTPEMhdC1zkVTpFmGRVmlvGBV26oyrVGLWrV507R5UTPBS74kn2bd7VQP2GgcQ2xKbl107PbSKiP_fhnNRnb2h4RMpFAeBD4cBZyN_fsgB-M19v1sVxZx2iCy_4NQZhxYjGJJ3v8DPtjJjXEKMprMWFWJyPCZ0c5677D93TEweYhe_opexugll4foY9W7p2b_1ByzjsDpDGxMt9kZh9IPMaKIg9ztdk-kfgKTGL10</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Drummond, Alexei J</creator><creator>Nicholls, Geoff K</creator><creator>Rodrigo, Allen G</creator><creator>Solomon, Wiremu</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020701</creationdate><title>Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data</title><author>Drummond, Alexei J ; Nicholls, Geoff K ; Rodrigo, Allen G ; Solomon, Wiremu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-40eceaeaae891560a34e66cbc56d7244e78923709ffa82bec6baf5ddf57b06383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Decision Trees</topic><topic>Genealogy</topic><topic>Genealogy and Heraldry</topic><topic>Genetics, Population</topic><topic>Genomics</topic><topic>Markov Chains</topic><topic>Models, Genetic</topic><topic>Monte Carlo Method</topic><topic>Mutation</topic><topic>Population</topic><topic>Predictions</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drummond, Alexei J</creatorcontrib><creatorcontrib>Nicholls, Geoff K</creatorcontrib><creatorcontrib>Rodrigo, Allen G</creatorcontrib><creatorcontrib>Solomon, Wiremu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drummond, Alexei J</au><au>Nicholls, Geoff K</au><au>Rodrigo, Allen G</au><au>Solomon, Wiremu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>161</volume><issue>3</issue><spage>1307</spage><epage>1320</epage><pages>1307-1320</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>12136032</pmid><doi>10.1093/genetics/161.3.1307</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2002-07, Vol.161 (3), p.1307-1320 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462188 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Decision Trees Genealogy Genealogy and Heraldry Genetics, Population Genomics Markov Chains Models, Genetic Monte Carlo Method Mutation Population Predictions Time |
title | Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Mutation%20Parameters,%20Population%20History%20and%20Genealogy%20Simultaneously%20From%20Temporally%20Spaced%20Sequence%20Data&rft.jtitle=Genetics%20(Austin)&rft.au=Drummond,%20Alexei%20J&rft.date=2002-07-01&rft.volume=161&rft.issue=3&rft.spage=1307&rft.epage=1320&rft.pages=1307-1320&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/161.3.1307&rft_dat=%3Cproquest_pubme%3E155443991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=89140996&rft_id=info:pmid/12136032&rfr_iscdi=true |