Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach

A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2002-02, Vol.160 (2), p.741-751
Hauptverfasser: Berthier, Pierre, Beaumont, Mark A, Cornuet, Jean-Marie, Luikart, Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 751
container_issue 2
container_start_page 741
container_title Genetics (Austin)
container_volume 160
creator Berthier, Pierre
Beaumont, Mark A
Cornuet, Jean-Marie
Luikart, Gordon
description A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit
doi_str_mv 10.1093/genetics/160.2.741
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1461962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18280133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-fb842c120fabe2a5bcd5c55b9070528cc08f0e3a163fd87f16ca9a4ed0aa36303</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEokvhD3BAFgdOZOuxEyfhgBRW2xZpJZBoz5bjTBIXbxziZFdw5JfjahcWeuFkyfPNm-fxi6KXQJdAC37RYo-T0f4CBF2yZZbAo2gBRcJjJjg8jhaUgohFxuEseub9HaVUFGn-NDoDyAWkWbqIfm7MV7Smc66OPyiPNVn7yWzVZFxPXEOmDsm6aVBPZofksxtme6h9MT-Q3HrTt-QGt4MblSWrTvUtemJ6UlqLFsnliN9m7LVB_46U5Co4Vta1Rge6HIbRKd09j540ynp8cTzPo9vL9c3qOt58uvq4KjexTlkyxU2VJ0wDo42qkKm00nWq07QqaEZTlmtN84YiVyB4U-dZA0KrQiVYU6W44JSfR-8PusNcbbHW2E_BtBzG8Nzxu3TKyH8rvelk63YSEgGFYEHg7UGge9B2XW5kuPM1SkpZkdJE7CDgb47zRheW4Ce5NV6jtapHN3uZQZLlInzP_0DIWU6B8wC-fgDeuXnsw2TJIAEoGLsfyw6QHp33IzZ_rAKV97mRv3MjQ24kkyE3oenV37s5tRyDcvLYmbbbmxGl3yprAw5yv9-flH4BGHrPjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214119221</pqid></control><display><type>article</type><title>Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Berthier, Pierre ; Beaumont, Mark A ; Cornuet, Jean-Marie ; Luikart, Gordon</creator><creatorcontrib>Berthier, Pierre ; Beaumont, Mark A ; Cornuet, Jean-Marie ; Luikart, Gordon</creatorcontrib><description>A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit &lt;50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/160.2.741</identifier><identifier>PMID: 11861575</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Animals ; Biodiversity ; Biodiversity and Ecology ; Ecology, environment ; effective population size ; Environmental Sciences ; Gene Frequency - genetics ; Genetics ; Humans ; Life Sciences ; Likelihood Functions ; Pedigree ; Population ; Population Density ; Predictions</subject><ispartof>Genetics (Austin), 2002-02, Vol.160 (2), p.741-751</ispartof><rights>Copyright Genetics Society of America Feb 2002</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-fb842c120fabe2a5bcd5c55b9070528cc08f0e3a163fd87f16ca9a4ed0aa36303</citedby><cites>FETCH-LOGICAL-c524t-fb842c120fabe2a5bcd5c55b9070528cc08f0e3a163fd87f16ca9a4ed0aa36303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11861575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/halsde-00295046$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berthier, Pierre</creatorcontrib><creatorcontrib>Beaumont, Mark A</creatorcontrib><creatorcontrib>Cornuet, Jean-Marie</creatorcontrib><creatorcontrib>Luikart, Gordon</creatorcontrib><title>Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit &lt;50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.</description><subject>Animals</subject><subject>Biodiversity</subject><subject>Biodiversity and Ecology</subject><subject>Ecology, environment</subject><subject>effective population size</subject><subject>Environmental Sciences</subject><subject>Gene Frequency - genetics</subject><subject>Genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Likelihood Functions</subject><subject>Pedigree</subject><subject>Population</subject><subject>Population Density</subject><subject>Predictions</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEokvhD3BAFgdOZOuxEyfhgBRW2xZpJZBoz5bjTBIXbxziZFdw5JfjahcWeuFkyfPNm-fxi6KXQJdAC37RYo-T0f4CBF2yZZbAo2gBRcJjJjg8jhaUgohFxuEseub9HaVUFGn-NDoDyAWkWbqIfm7MV7Smc66OPyiPNVn7yWzVZFxPXEOmDsm6aVBPZofksxtme6h9MT-Q3HrTt-QGt4MblSWrTvUtemJ6UlqLFsnliN9m7LVB_46U5Co4Vta1Rge6HIbRKd09j540ynp8cTzPo9vL9c3qOt58uvq4KjexTlkyxU2VJ0wDo42qkKm00nWq07QqaEZTlmtN84YiVyB4U-dZA0KrQiVYU6W44JSfR-8PusNcbbHW2E_BtBzG8Nzxu3TKyH8rvelk63YSEgGFYEHg7UGge9B2XW5kuPM1SkpZkdJE7CDgb47zRheW4Ce5NV6jtapHN3uZQZLlInzP_0DIWU6B8wC-fgDeuXnsw2TJIAEoGLsfyw6QHp33IzZ_rAKV97mRv3MjQ24kkyE3oenV37s5tRyDcvLYmbbbmxGl3yprAw5yv9-flH4BGHrPjQ</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Berthier, Pierre</creator><creator>Beaumont, Mark A</creator><creator>Cornuet, Jean-Marie</creator><creator>Luikart, Gordon</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20020201</creationdate><title>Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach</title><author>Berthier, Pierre ; Beaumont, Mark A ; Cornuet, Jean-Marie ; Luikart, Gordon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-fb842c120fabe2a5bcd5c55b9070528cc08f0e3a163fd87f16ca9a4ed0aa36303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Biodiversity</topic><topic>Biodiversity and Ecology</topic><topic>Ecology, environment</topic><topic>effective population size</topic><topic>Environmental Sciences</topic><topic>Gene Frequency - genetics</topic><topic>Genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Likelihood Functions</topic><topic>Pedigree</topic><topic>Population</topic><topic>Population Density</topic><topic>Predictions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthier, Pierre</creatorcontrib><creatorcontrib>Beaumont, Mark A</creatorcontrib><creatorcontrib>Cornuet, Jean-Marie</creatorcontrib><creatorcontrib>Luikart, Gordon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthier, Pierre</au><au>Beaumont, Mark A</au><au>Cornuet, Jean-Marie</au><au>Luikart, Gordon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2002-02-01</date><risdate>2002</risdate><volume>160</volume><issue>2</issue><spage>741</spage><epage>751</epage><pages>741-751</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit &lt;50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>11861575</pmid><doi>10.1093/genetics/160.2.741</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2002-02, Vol.160 (2), p.741-751
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1461962
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Biodiversity
Biodiversity and Ecology
Ecology, environment
effective population size
Environmental Sciences
Gene Frequency - genetics
Genetics
Humans
Life Sciences
Likelihood Functions
Pedigree
Population
Population Density
Predictions
title Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Likelihood-Based%20Estimation%20of%20the%20Effective%20Population%20Size%20Using%20Temporal%20Changes%20in%20Allele%20Frequencies:%20A%20Genealogical%20Approach&rft.jtitle=Genetics%20(Austin)&rft.au=Berthier,%20Pierre&rft.date=2002-02-01&rft.volume=160&rft.issue=2&rft.spage=741&rft.epage=751&rft.pages=741-751&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/160.2.741&rft_dat=%3Cproquest_pubme%3E18280133%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214119221&rft_id=info:pmid/11861575&rfr_iscdi=true