Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach
A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using dat...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2002-02, Vol.160 (2), p.741-751 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 751 |
---|---|
container_issue | 2 |
container_start_page | 741 |
container_title | Genetics (Austin) |
container_volume | 160 |
creator | Berthier, Pierre Beaumont, Mark A Cornuet, Jean-Marie Luikart, Gordon |
description | A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit |
doi_str_mv | 10.1093/genetics/160.2.741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1461962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18280133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-fb842c120fabe2a5bcd5c55b9070528cc08f0e3a163fd87f16ca9a4ed0aa36303</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEokvhD3BAFgdOZOuxEyfhgBRW2xZpJZBoz5bjTBIXbxziZFdw5JfjahcWeuFkyfPNm-fxi6KXQJdAC37RYo-T0f4CBF2yZZbAo2gBRcJjJjg8jhaUgohFxuEseub9HaVUFGn-NDoDyAWkWbqIfm7MV7Smc66OPyiPNVn7yWzVZFxPXEOmDsm6aVBPZofksxtme6h9MT-Q3HrTt-QGt4MblSWrTvUtemJ6UlqLFsnliN9m7LVB_46U5Co4Vta1Rge6HIbRKd09j540ynp8cTzPo9vL9c3qOt58uvq4KjexTlkyxU2VJ0wDo42qkKm00nWq07QqaEZTlmtN84YiVyB4U-dZA0KrQiVYU6W44JSfR-8PusNcbbHW2E_BtBzG8Nzxu3TKyH8rvelk63YSEgGFYEHg7UGge9B2XW5kuPM1SkpZkdJE7CDgb47zRheW4Ce5NV6jtapHN3uZQZLlInzP_0DIWU6B8wC-fgDeuXnsw2TJIAEoGLsfyw6QHp33IzZ_rAKV97mRv3MjQ24kkyE3oenV37s5tRyDcvLYmbbbmxGl3yprAw5yv9-flH4BGHrPjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214119221</pqid></control><display><type>article</type><title>Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Berthier, Pierre ; Beaumont, Mark A ; Cornuet, Jean-Marie ; Luikart, Gordon</creator><creatorcontrib>Berthier, Pierre ; Beaumont, Mark A ; Cornuet, Jean-Marie ; Luikart, Gordon</creatorcontrib><description>A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit <50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/160.2.741</identifier><identifier>PMID: 11861575</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Animals ; Biodiversity ; Biodiversity and Ecology ; Ecology, environment ; effective population size ; Environmental Sciences ; Gene Frequency - genetics ; Genetics ; Humans ; Life Sciences ; Likelihood Functions ; Pedigree ; Population ; Population Density ; Predictions</subject><ispartof>Genetics (Austin), 2002-02, Vol.160 (2), p.741-751</ispartof><rights>Copyright Genetics Society of America Feb 2002</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-fb842c120fabe2a5bcd5c55b9070528cc08f0e3a163fd87f16ca9a4ed0aa36303</citedby><cites>FETCH-LOGICAL-c524t-fb842c120fabe2a5bcd5c55b9070528cc08f0e3a163fd87f16ca9a4ed0aa36303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11861575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/halsde-00295046$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berthier, Pierre</creatorcontrib><creatorcontrib>Beaumont, Mark A</creatorcontrib><creatorcontrib>Cornuet, Jean-Marie</creatorcontrib><creatorcontrib>Luikart, Gordon</creatorcontrib><title>Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit <50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.</description><subject>Animals</subject><subject>Biodiversity</subject><subject>Biodiversity and Ecology</subject><subject>Ecology, environment</subject><subject>effective population size</subject><subject>Environmental Sciences</subject><subject>Gene Frequency - genetics</subject><subject>Genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Likelihood Functions</subject><subject>Pedigree</subject><subject>Population</subject><subject>Population Density</subject><subject>Predictions</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEokvhD3BAFgdOZOuxEyfhgBRW2xZpJZBoz5bjTBIXbxziZFdw5JfjahcWeuFkyfPNm-fxi6KXQJdAC37RYo-T0f4CBF2yZZbAo2gBRcJjJjg8jhaUgohFxuEseub9HaVUFGn-NDoDyAWkWbqIfm7MV7Smc66OPyiPNVn7yWzVZFxPXEOmDsm6aVBPZofksxtme6h9MT-Q3HrTt-QGt4MblSWrTvUtemJ6UlqLFsnliN9m7LVB_46U5Co4Vta1Rge6HIbRKd09j540ynp8cTzPo9vL9c3qOt58uvq4KjexTlkyxU2VJ0wDo42qkKm00nWq07QqaEZTlmtN84YiVyB4U-dZA0KrQiVYU6W44JSfR-8PusNcbbHW2E_BtBzG8Nzxu3TKyH8rvelk63YSEgGFYEHg7UGge9B2XW5kuPM1SkpZkdJE7CDgb47zRheW4Ce5NV6jtapHN3uZQZLlInzP_0DIWU6B8wC-fgDeuXnsw2TJIAEoGLsfyw6QHp33IzZ_rAKV97mRv3MjQ24kkyE3oenV37s5tRyDcvLYmbbbmxGl3yprAw5yv9-flH4BGHrPjQ</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Berthier, Pierre</creator><creator>Beaumont, Mark A</creator><creator>Cornuet, Jean-Marie</creator><creator>Luikart, Gordon</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20020201</creationdate><title>Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach</title><author>Berthier, Pierre ; Beaumont, Mark A ; Cornuet, Jean-Marie ; Luikart, Gordon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-fb842c120fabe2a5bcd5c55b9070528cc08f0e3a163fd87f16ca9a4ed0aa36303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Biodiversity</topic><topic>Biodiversity and Ecology</topic><topic>Ecology, environment</topic><topic>effective population size</topic><topic>Environmental Sciences</topic><topic>Gene Frequency - genetics</topic><topic>Genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Likelihood Functions</topic><topic>Pedigree</topic><topic>Population</topic><topic>Population Density</topic><topic>Predictions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthier, Pierre</creatorcontrib><creatorcontrib>Beaumont, Mark A</creatorcontrib><creatorcontrib>Cornuet, Jean-Marie</creatorcontrib><creatorcontrib>Luikart, Gordon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthier, Pierre</au><au>Beaumont, Mark A</au><au>Cornuet, Jean-Marie</au><au>Luikart, Gordon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2002-02-01</date><risdate>2002</risdate><volume>160</volume><issue>2</issue><spage>741</spage><epage>751</epage><pages>741-751</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit <50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>11861575</pmid><doi>10.1093/genetics/160.2.741</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2002-02, Vol.160 (2), p.741-751 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1461962 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Biodiversity Biodiversity and Ecology Ecology, environment effective population size Environmental Sciences Gene Frequency - genetics Genetics Humans Life Sciences Likelihood Functions Pedigree Population Population Density Predictions |
title | Likelihood-Based Estimation of the Effective Population Size Using Temporal Changes in Allele Frequencies: A Genealogical Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Likelihood-Based%20Estimation%20of%20the%20Effective%20Population%20Size%20Using%20Temporal%20Changes%20in%20Allele%20Frequencies:%20A%20Genealogical%20Approach&rft.jtitle=Genetics%20(Austin)&rft.au=Berthier,%20Pierre&rft.date=2002-02-01&rft.volume=160&rft.issue=2&rft.spage=741&rft.epage=751&rft.pages=741-751&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/160.2.741&rft_dat=%3Cproquest_pubme%3E18280133%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214119221&rft_id=info:pmid/11861575&rfr_iscdi=true |