Neuronal Metabolism Governs Cortical Network Response State

The level of arousal in mammals is correlated with metabolic state and specific patterns of cortical neuronal responsivity. In particular, rhythmic transitions between periods of high activity (up phases) and low activity (down phases) vary between wakefulness and deep sleep/anesthesia. Current opin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-04, Vol.103 (14), p.5597-5601
Hauptverfasser: Cunningham, M. O., Pervouchine, D. D., Racca, C., Kopell, N. J., Davies, C. H., Jones, R. S. G., Traub, R. D., Whittington, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The level of arousal in mammals is correlated with metabolic state and specific patterns of cortical neuronal responsivity. In particular, rhythmic transitions between periods of high activity (up phases) and low activity (down phases) vary between wakefulness and deep sleep/anesthesia. Current opinion about changes in cortical response state between sleep and wakefulness is split between neuronal network-mediated mechanisms and neuronal metabolism-related mechanisms. Here, we demonstrate that slow oscillations in network state are a consequence of interactions between both mechanisms. Specifically, recurrent networks of excitatory neurons, whose membrane potential is partly governed by ATPmodulated potassium $(K_{ATP})$ channels, mediate response-state oscillations via the interaction between excitatory network activity involving slow, kainate receptor-mediated events and the resulting activation of ATP-dependent homeostatic mechanisms. These findings suggest that $K^{ATP}$ channels function as an interface between neuronal metabolic state and network responsivity in mammalian cortex.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0600604103