Directed Evolution to Probe Protein Allostery and Integrin I Domains of 200,000-Fold Higher Affinity

Understanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin$\alpha_{L}$inserted domain for studying allostery by using a yeast surface display system. Many hot s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-04, Vol.103 (15), p.5758-5763
Hauptverfasser: Jin, Moonsoo, Song, Gang, Carman, Christopher V., Kim, Yong-Sung, Astrof, Nathan S., Shimaoka, Motomu, Wittrup, Dane K., Springer, Timothy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5763
container_issue 15
container_start_page 5758
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Jin, Moonsoo
Song, Gang
Carman, Christopher V.
Kim, Yong-Sung
Astrof, Nathan S.
Shimaoka, Motomu
Wittrup, Dane K.
Springer, Timothy A.
description Understanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin$\alpha_{L}$inserted domain for studying allostery by using a yeast surface display system. Many hot spots for activation are identified, and some single mutants exhibit remarkable increases of 10,000-fold in affinity for a physiological ligand, intercellular adhesion molecule-1. The location of activating mutations traces out an allosteric interface in the interior of the inserted domain that connects the ligand binding site to the α7-helix, which communicates allostery to neighboring domains in intact integrins. The combination of two activating mutations (F265S/F292G) leads to an increase of 200,000-fold in affinity to intercellular adhesion molecule-1. The F265S/F292G mutant is potent in antagonizing lymphocyte function-associated antigen 1-dependent lymphocyte adhesion, aggregation, and transmigration.
doi_str_mv 10.1073/pnas.0601164103
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1458646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30050173</jstor_id><sourcerecordid>30050173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-9de1634f122198f16befb4d105303a5e22c6dc5ca8d8d93d881676b1bb9f63c83</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqFw5gSyOHDqtjP22uu9VIr6GakSHOBsedfe1NHGDrZTKf-ejRK1wIWLR_I8887HS8hHhHOEhl9sgsnnIAFR1gj8FZkhtFjJuoXXZAbAmkrVrD4h73JeAUArFLwlJyhFKySTM2KvfXJ9cZbePMVxW3wMtET6PcXO7d_ifKDzcYy5uLSjJli6CMUt0_S9oNdxbXzINA6UAZxNDarbOFp675ePLtH5MPjgy-49eTOYMbsPx3hKft7e_Li6rx6-3S2u5g9VL5gqVWsdSl4PyBi2akDZuaGrLYLgwI1wjPXS9qI3yirbcqsUykZ22HXtIHmv-Cm5POhutt3a2d6FksyoN8mvTdrpaLz-OxP8o17GJ421ULKWk8DXo0CKv7YuF732uXfjaIKL26xlo0QjGfsvyEBJVMAn8Ms_4CpuU5iuMDHIW6hlO0EXB6hPMefkhueREfTeZ733Wb_4PFV8_nPTF_5o7AR8OgCrXGJ6znMAAdhw_hswu6yb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201390469</pqid></control><display><type>article</type><title>Directed Evolution to Probe Protein Allostery and Integrin I Domains of 200,000-Fold Higher Affinity</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Moonsoo ; Song, Gang ; Carman, Christopher V. ; Kim, Yong-Sung ; Astrof, Nathan S. ; Shimaoka, Motomu ; Wittrup, Dane K. ; Springer, Timothy A.</creator><creatorcontrib>Jin, Moonsoo ; Song, Gang ; Carman, Christopher V. ; Kim, Yong-Sung ; Astrof, Nathan S. ; Shimaoka, Motomu ; Wittrup, Dane K. ; Springer, Timothy A.</creatorcontrib><description>Understanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin$\alpha_{L}$inserted domain for studying allostery by using a yeast surface display system. Many hot spots for activation are identified, and some single mutants exhibit remarkable increases of 10,000-fold in affinity for a physiological ligand, intercellular adhesion molecule-1. The location of activating mutations traces out an allosteric interface in the interior of the inserted domain that connects the ligand binding site to the α7-helix, which communicates allostery to neighboring domains in intact integrins. The combination of two activating mutations (F265S/F292G) leads to an increase of 200,000-fold in affinity to intercellular adhesion molecule-1. The F265S/F292G mutant is potent in antagonizing lymphocyte function-associated antigen 1-dependent lymphocyte adhesion, aggregation, and transmigration.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0601164103</identifier><identifier>PMID: 16595626</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adhesion ; Aggregation ; Allosteric Regulation ; Amino Acid Sequence ; Antibodies ; Binding Sites ; Biological Sciences ; Biophysics ; Cell adhesion &amp; migration ; Directed Molecular Evolution ; Evolution ; Integrins ; Integrins - chemistry ; Integrins - metabolism ; Intercellular Adhesion Molecule-1 - chemistry ; Intercellular Adhesion Molecule-1 - genetics ; Intercellular Adhesion Molecule-1 - metabolism ; Kinetics ; Libraries ; Ligands ; Lymphocytes ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Mutation ; Polymerase Chain Reaction ; Protein Structure, Secondary ; Proteins ; Proteins - chemistry ; Proteins - metabolism ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Solubility ; Surface Plasmon Resonance ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-04, Vol.103 (15), p.5758-5763</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 11, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-9de1634f122198f16befb4d105303a5e22c6dc5ca8d8d93d881676b1bb9f63c83</citedby><cites>FETCH-LOGICAL-c528t-9de1634f122198f16befb4d105303a5e22c6dc5ca8d8d93d881676b1bb9f63c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30050173$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30050173$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16595626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Moonsoo</creatorcontrib><creatorcontrib>Song, Gang</creatorcontrib><creatorcontrib>Carman, Christopher V.</creatorcontrib><creatorcontrib>Kim, Yong-Sung</creatorcontrib><creatorcontrib>Astrof, Nathan S.</creatorcontrib><creatorcontrib>Shimaoka, Motomu</creatorcontrib><creatorcontrib>Wittrup, Dane K.</creatorcontrib><creatorcontrib>Springer, Timothy A.</creatorcontrib><title>Directed Evolution to Probe Protein Allostery and Integrin I Domains of 200,000-Fold Higher Affinity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Understanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin$\alpha_{L}$inserted domain for studying allostery by using a yeast surface display system. Many hot spots for activation are identified, and some single mutants exhibit remarkable increases of 10,000-fold in affinity for a physiological ligand, intercellular adhesion molecule-1. The location of activating mutations traces out an allosteric interface in the interior of the inserted domain that connects the ligand binding site to the α7-helix, which communicates allostery to neighboring domains in intact integrins. The combination of two activating mutations (F265S/F292G) leads to an increase of 200,000-fold in affinity to intercellular adhesion molecule-1. The F265S/F292G mutant is potent in antagonizing lymphocyte function-associated antigen 1-dependent lymphocyte adhesion, aggregation, and transmigration.</description><subject>Adhesion</subject><subject>Aggregation</subject><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Antibodies</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Cell adhesion &amp; migration</subject><subject>Directed Molecular Evolution</subject><subject>Evolution</subject><subject>Integrins</subject><subject>Integrins - chemistry</subject><subject>Integrins - metabolism</subject><subject>Intercellular Adhesion Molecule-1 - chemistry</subject><subject>Intercellular Adhesion Molecule-1 - genetics</subject><subject>Intercellular Adhesion Molecule-1 - metabolism</subject><subject>Kinetics</subject><subject>Libraries</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Solubility</subject><subject>Surface Plasmon Resonance</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EoqFw5gSyOHDqtjP22uu9VIr6GakSHOBsedfe1NHGDrZTKf-ejRK1wIWLR_I8887HS8hHhHOEhl9sgsnnIAFR1gj8FZkhtFjJuoXXZAbAmkrVrD4h73JeAUArFLwlJyhFKySTM2KvfXJ9cZbePMVxW3wMtET6PcXO7d_ifKDzcYy5uLSjJli6CMUt0_S9oNdxbXzINA6UAZxNDarbOFp675ePLtH5MPjgy-49eTOYMbsPx3hKft7e_Li6rx6-3S2u5g9VL5gqVWsdSl4PyBi2akDZuaGrLYLgwI1wjPXS9qI3yirbcqsUykZ22HXtIHmv-Cm5POhutt3a2d6FksyoN8mvTdrpaLz-OxP8o17GJ421ULKWk8DXo0CKv7YuF732uXfjaIKL26xlo0QjGfsvyEBJVMAn8Ms_4CpuU5iuMDHIW6hlO0EXB6hPMefkhueREfTeZ733Wb_4PFV8_nPTF_5o7AR8OgCrXGJ6znMAAdhw_hswu6yb</recordid><startdate>20060411</startdate><enddate>20060411</enddate><creator>Jin, Moonsoo</creator><creator>Song, Gang</creator><creator>Carman, Christopher V.</creator><creator>Kim, Yong-Sung</creator><creator>Astrof, Nathan S.</creator><creator>Shimaoka, Motomu</creator><creator>Wittrup, Dane K.</creator><creator>Springer, Timothy A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060411</creationdate><title>Directed Evolution to Probe Protein Allostery and Integrin I Domains of 200,000-Fold Higher Affinity</title><author>Jin, Moonsoo ; Song, Gang ; Carman, Christopher V. ; Kim, Yong-Sung ; Astrof, Nathan S. ; Shimaoka, Motomu ; Wittrup, Dane K. ; Springer, Timothy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-9de1634f122198f16befb4d105303a5e22c6dc5ca8d8d93d881676b1bb9f63c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adhesion</topic><topic>Aggregation</topic><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Antibodies</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Cell adhesion &amp; migration</topic><topic>Directed Molecular Evolution</topic><topic>Evolution</topic><topic>Integrins</topic><topic>Integrins - chemistry</topic><topic>Integrins - metabolism</topic><topic>Intercellular Adhesion Molecule-1 - chemistry</topic><topic>Intercellular Adhesion Molecule-1 - genetics</topic><topic>Intercellular Adhesion Molecule-1 - metabolism</topic><topic>Kinetics</topic><topic>Libraries</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Solubility</topic><topic>Surface Plasmon Resonance</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Moonsoo</creatorcontrib><creatorcontrib>Song, Gang</creatorcontrib><creatorcontrib>Carman, Christopher V.</creatorcontrib><creatorcontrib>Kim, Yong-Sung</creatorcontrib><creatorcontrib>Astrof, Nathan S.</creatorcontrib><creatorcontrib>Shimaoka, Motomu</creatorcontrib><creatorcontrib>Wittrup, Dane K.</creatorcontrib><creatorcontrib>Springer, Timothy A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Moonsoo</au><au>Song, Gang</au><au>Carman, Christopher V.</au><au>Kim, Yong-Sung</au><au>Astrof, Nathan S.</au><au>Shimaoka, Motomu</au><au>Wittrup, Dane K.</au><au>Springer, Timothy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed Evolution to Probe Protein Allostery and Integrin I Domains of 200,000-Fold Higher Affinity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-04-11</date><risdate>2006</risdate><volume>103</volume><issue>15</issue><spage>5758</spage><epage>5763</epage><pages>5758-5763</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin$\alpha_{L}$inserted domain for studying allostery by using a yeast surface display system. Many hot spots for activation are identified, and some single mutants exhibit remarkable increases of 10,000-fold in affinity for a physiological ligand, intercellular adhesion molecule-1. The location of activating mutations traces out an allosteric interface in the interior of the inserted domain that connects the ligand binding site to the α7-helix, which communicates allostery to neighboring domains in intact integrins. The combination of two activating mutations (F265S/F292G) leads to an increase of 200,000-fold in affinity to intercellular adhesion molecule-1. The F265S/F292G mutant is potent in antagonizing lymphocyte function-associated antigen 1-dependent lymphocyte adhesion, aggregation, and transmigration.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16595626</pmid><doi>10.1073/pnas.0601164103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-04, Vol.103 (15), p.5758-5763
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1458646
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adhesion
Aggregation
Allosteric Regulation
Amino Acid Sequence
Antibodies
Binding Sites
Biological Sciences
Biophysics
Cell adhesion & migration
Directed Molecular Evolution
Evolution
Integrins
Integrins - chemistry
Integrins - metabolism
Intercellular Adhesion Molecule-1 - chemistry
Intercellular Adhesion Molecule-1 - genetics
Intercellular Adhesion Molecule-1 - metabolism
Kinetics
Libraries
Ligands
Lymphocytes
Models, Molecular
Molecular Sequence Data
Mutagenesis
Mutation
Polymerase Chain Reaction
Protein Structure, Secondary
Proteins
Proteins - chemistry
Proteins - metabolism
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Solubility
Surface Plasmon Resonance
Yeast
Yeasts
title Directed Evolution to Probe Protein Allostery and Integrin I Domains of 200,000-Fold Higher Affinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20Evolution%20to%20Probe%20Protein%20Allostery%20and%20Integrin%20I%20Domains%20of%20200,000-Fold%20Higher%20Affinity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jin,%20Moonsoo&rft.date=2006-04-11&rft.volume=103&rft.issue=15&rft.spage=5758&rft.epage=5763&rft.pages=5758-5763&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0601164103&rft_dat=%3Cjstor_pubme%3E30050173%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201390469&rft_id=info:pmid/16595626&rft_jstor_id=30050173&rfr_iscdi=true