Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA
Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 1996-03, Vol.24 (5), p.898-906 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 906 |
---|---|
container_issue | 5 |
container_start_page | 898 |
container_title | Nucleic acids research |
container_volume | 24 |
creator | Shen, Wei-Fang Chang, Ching-Pin Rozenfeld, Sofia Sauvageau, Guy Humphries, R. Keith Lu, Ming Lawrence, H. Jeffrey Cleary, Michael L. Largman, Corey |
description | Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the Hox or Pbx1a proteins alone. The stabilities of the Hox-Pbx1a-DNA complexes vary >100-fold, with the proteins from the middle of the locus (Hoxb-5 and Hoxb-6) forming very stable complexes, while Hoxb-4, Hoxb-7 and Hoxb-8 form complexes of intermediate stability and proteins at the 3′-side of the locus (Hoxb-1-Hoxb-3) form complexes which are very unstable. Although Hox-b proteins containing longer linker sequences between the hexapeptide and homeodomains formed unstable complexes, shortening the linker did not confer complex stability. Homeodomain swapping experiments revealed that this motif does not independently determine complex stability. Naturally occurring variations within the hexapeptides of specific Hox proteins also do not explain complex stability differences. However, two core amino acids (tryptophan and methionine) which are absolutely conserved within the hexapeptide domains appear to be required for complex formation. Removal of N- and C-terminal flanking regions did not influence complex stability and the members of paralog group 4 (Hoxa-4, b-4, c-4 and d-4), which share highly conserved hexapeptides, linkers and homeodomains but different flanking regions, form complexes of similar stability. These data suggest that the structural features of Hox proteins which determine Hox-Pbx1a-DNA complex stability reside within the precise structural relationships between the homeodomain, hexapeptide and linker regions. |
doi_str_mv | 10.1093/nar/24.5.898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_145726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19359915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-922c8594ef70acb49a021bc0f24d1bd8d06d187755e4961d44875f39beda44fa3</originalsourceid><addsrcrecordid>eNqNkUFv1DAQRi0EKkvhxhXJJ07N1nbs2D5wqJbSRapopIKEuFhOPGENSbzY3jb8e4J2tYJTe5rDe99oRh9CrylZUqLL89HGc8aXYqm0eoIWtKxYwXXFnqIFKYkoKOHqOXqR0g9CKKeCn6ATVRHChVqgm3WY8DoMEFwYrB9xHUMGPyZ8OW184zO-hR7a7O8Ar8Kw7WHCt9k2vvfZQ8L3Pm9w3UzYjg6__3TxEj3rbJ_g1WGeoi8fLj-v1sX1zdXH1cV10XKpcqEZa5XQHDpJbNtwbQmjTUs6xh1tnHKkclRJKQTMr1DHuZKiK3UDznLe2fIUvdvv3e6aAVwLY462N9voBxt_m2C9-Z-MfmO-hztDuZCsmvNvD_kYfu0gZTP41ELf2xHCLhkptXiUSHUptKbiYVESLhlhs3i2F9sYUorQHa-mxPxt1MyNGsaNMHOjs_7m30-P8qHCmRd77lOG6Yht_GkqWUph1l-_mfqKsapW2tTlHztfq_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17047202</pqid></control><display><type>article</type><title>Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shen, Wei-Fang ; Chang, Ching-Pin ; Rozenfeld, Sofia ; Sauvageau, Guy ; Humphries, R. Keith ; Lu, Ming ; Lawrence, H. Jeffrey ; Cleary, Michael L. ; Largman, Corey</creator><creatorcontrib>Shen, Wei-Fang ; Chang, Ching-Pin ; Rozenfeld, Sofia ; Sauvageau, Guy ; Humphries, R. Keith ; Lu, Ming ; Lawrence, H. Jeffrey ; Cleary, Michael L. ; Largman, Corey</creatorcontrib><description>Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the Hox or Pbx1a proteins alone. The stabilities of the Hox-Pbx1a-DNA complexes vary >100-fold, with the proteins from the middle of the locus (Hoxb-5 and Hoxb-6) forming very stable complexes, while Hoxb-4, Hoxb-7 and Hoxb-8 form complexes of intermediate stability and proteins at the 3′-side of the locus (Hoxb-1-Hoxb-3) form complexes which are very unstable. Although Hox-b proteins containing longer linker sequences between the hexapeptide and homeodomains formed unstable complexes, shortening the linker did not confer complex stability. Homeodomain swapping experiments revealed that this motif does not independently determine complex stability. Naturally occurring variations within the hexapeptides of specific Hox proteins also do not explain complex stability differences. However, two core amino acids (tryptophan and methionine) which are absolutely conserved within the hexapeptide domains appear to be required for complex formation. Removal of N- and C-terminal flanking regions did not influence complex stability and the members of paralog group 4 (Hoxa-4, b-4, c-4 and d-4), which share highly conserved hexapeptides, linkers and homeodomains but different flanking regions, form complexes of similar stability. These data suggest that the structural features of Hox proteins which determine Hox-Pbx1a-DNA complex stability reside within the precise structural relationships between the homeodomain, hexapeptide and linker regions.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/24.5.898</identifier><identifier>PMID: 8600458</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Base Sequence ; DNA - metabolism ; DNA-Binding Proteins - metabolism ; Homeodomain Proteins - metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Pre-B-Cell Leukemia Transcription Factor 1 ; Protein Binding ; Proto-Oncogene Proteins - metabolism ; Sequence Analysis</subject><ispartof>Nucleic acids research, 1996-03, Vol.24 (5), p.898-906</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-922c8594ef70acb49a021bc0f24d1bd8d06d187755e4961d44875f39beda44fa3</citedby><cites>FETCH-LOGICAL-c478t-922c8594ef70acb49a021bc0f24d1bd8d06d187755e4961d44875f39beda44fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC145726/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC145726/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8600458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Wei-Fang</creatorcontrib><creatorcontrib>Chang, Ching-Pin</creatorcontrib><creatorcontrib>Rozenfeld, Sofia</creatorcontrib><creatorcontrib>Sauvageau, Guy</creatorcontrib><creatorcontrib>Humphries, R. Keith</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Lawrence, H. Jeffrey</creatorcontrib><creatorcontrib>Cleary, Michael L.</creatorcontrib><creatorcontrib>Largman, Corey</creatorcontrib><title>Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Research</addtitle><description>Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the Hox or Pbx1a proteins alone. The stabilities of the Hox-Pbx1a-DNA complexes vary >100-fold, with the proteins from the middle of the locus (Hoxb-5 and Hoxb-6) forming very stable complexes, while Hoxb-4, Hoxb-7 and Hoxb-8 form complexes of intermediate stability and proteins at the 3′-side of the locus (Hoxb-1-Hoxb-3) form complexes which are very unstable. Although Hox-b proteins containing longer linker sequences between the hexapeptide and homeodomains formed unstable complexes, shortening the linker did not confer complex stability. Homeodomain swapping experiments revealed that this motif does not independently determine complex stability. Naturally occurring variations within the hexapeptides of specific Hox proteins also do not explain complex stability differences. However, two core amino acids (tryptophan and methionine) which are absolutely conserved within the hexapeptide domains appear to be required for complex formation. Removal of N- and C-terminal flanking regions did not influence complex stability and the members of paralog group 4 (Hoxa-4, b-4, c-4 and d-4), which share highly conserved hexapeptides, linkers and homeodomains but different flanking regions, form complexes of similar stability. These data suggest that the structural features of Hox proteins which determine Hox-Pbx1a-DNA complex stability reside within the precise structural relationships between the homeodomain, hexapeptide and linker regions.</description><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Macromolecular Substances</subject><subject>Molecular Sequence Data</subject><subject>Pre-B-Cell Leukemia Transcription Factor 1</subject><subject>Protein Binding</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Sequence Analysis</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQRi0EKkvhxhXJJ07N1nbs2D5wqJbSRapopIKEuFhOPGENSbzY3jb8e4J2tYJTe5rDe99oRh9CrylZUqLL89HGc8aXYqm0eoIWtKxYwXXFnqIFKYkoKOHqOXqR0g9CKKeCn6ATVRHChVqgm3WY8DoMEFwYrB9xHUMGPyZ8OW184zO-hR7a7O8Ar8Kw7WHCt9k2vvfZQ8L3Pm9w3UzYjg6__3TxEj3rbJ_g1WGeoi8fLj-v1sX1zdXH1cV10XKpcqEZa5XQHDpJbNtwbQmjTUs6xh1tnHKkclRJKQTMr1DHuZKiK3UDznLe2fIUvdvv3e6aAVwLY462N9voBxt_m2C9-Z-MfmO-hztDuZCsmvNvD_kYfu0gZTP41ELf2xHCLhkptXiUSHUptKbiYVESLhlhs3i2F9sYUorQHa-mxPxt1MyNGsaNMHOjs_7m30-P8qHCmRd77lOG6Yht_GkqWUph1l-_mfqKsapW2tTlHztfq_Y</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Shen, Wei-Fang</creator><creator>Chang, Ching-Pin</creator><creator>Rozenfeld, Sofia</creator><creator>Sauvageau, Guy</creator><creator>Humphries, R. Keith</creator><creator>Lu, Ming</creator><creator>Lawrence, H. Jeffrey</creator><creator>Cleary, Michael L.</creator><creator>Largman, Corey</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960301</creationdate><title>Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA</title><author>Shen, Wei-Fang ; Chang, Ching-Pin ; Rozenfeld, Sofia ; Sauvageau, Guy ; Humphries, R. Keith ; Lu, Ming ; Lawrence, H. Jeffrey ; Cleary, Michael L. ; Largman, Corey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-922c8594ef70acb49a021bc0f24d1bd8d06d187755e4961d44875f39beda44fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Macromolecular Substances</topic><topic>Molecular Sequence Data</topic><topic>Pre-B-Cell Leukemia Transcription Factor 1</topic><topic>Protein Binding</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Sequence Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Wei-Fang</creatorcontrib><creatorcontrib>Chang, Ching-Pin</creatorcontrib><creatorcontrib>Rozenfeld, Sofia</creatorcontrib><creatorcontrib>Sauvageau, Guy</creatorcontrib><creatorcontrib>Humphries, R. Keith</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Lawrence, H. Jeffrey</creatorcontrib><creatorcontrib>Cleary, Michael L.</creatorcontrib><creatorcontrib>Largman, Corey</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Wei-Fang</au><au>Chang, Ching-Pin</au><au>Rozenfeld, Sofia</au><au>Sauvageau, Guy</au><au>Humphries, R. Keith</au><au>Lu, Ming</au><au>Lawrence, H. Jeffrey</au><au>Cleary, Michael L.</au><au>Largman, Corey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Research</addtitle><date>1996-03-01</date><risdate>1996</risdate><volume>24</volume><issue>5</issue><spage>898</spage><epage>906</epage><pages>898-906</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the Hox or Pbx1a proteins alone. The stabilities of the Hox-Pbx1a-DNA complexes vary >100-fold, with the proteins from the middle of the locus (Hoxb-5 and Hoxb-6) forming very stable complexes, while Hoxb-4, Hoxb-7 and Hoxb-8 form complexes of intermediate stability and proteins at the 3′-side of the locus (Hoxb-1-Hoxb-3) form complexes which are very unstable. Although Hox-b proteins containing longer linker sequences between the hexapeptide and homeodomains formed unstable complexes, shortening the linker did not confer complex stability. Homeodomain swapping experiments revealed that this motif does not independently determine complex stability. Naturally occurring variations within the hexapeptides of specific Hox proteins also do not explain complex stability differences. However, two core amino acids (tryptophan and methionine) which are absolutely conserved within the hexapeptide domains appear to be required for complex formation. Removal of N- and C-terminal flanking regions did not influence complex stability and the members of paralog group 4 (Hoxa-4, b-4, c-4 and d-4), which share highly conserved hexapeptides, linkers and homeodomains but different flanking regions, form complexes of similar stability. These data suggest that the structural features of Hox proteins which determine Hox-Pbx1a-DNA complex stability reside within the precise structural relationships between the homeodomain, hexapeptide and linker regions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>8600458</pmid><doi>10.1093/nar/24.5.898</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 1996-03, Vol.24 (5), p.898-906 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_145726 |
source | Oxford Journals Open Access Collection; MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Base Sequence DNA - metabolism DNA-Binding Proteins - metabolism Homeodomain Proteins - metabolism Macromolecular Substances Molecular Sequence Data Pre-B-Cell Leukemia Transcription Factor 1 Protein Binding Proto-Oncogene Proteins - metabolism Sequence Analysis |
title | Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hox%20Homeodomain%20Proteins%20Exhibit%20Selective%20Complex%20Stabilities%20with%20Pbx%20and%20DNA&rft.jtitle=Nucleic%20acids%20research&rft.au=Shen,%20Wei-Fang&rft.date=1996-03-01&rft.volume=24&rft.issue=5&rft.spage=898&rft.epage=906&rft.pages=898-906&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/24.5.898&rft_dat=%3Cproquest_pubme%3E19359915%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17047202&rft_id=info:pmid/8600458&rfr_iscdi=true |