Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA

Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 1996-03, Vol.24 (5), p.898-906
Hauptverfasser: Shen, Wei-Fang, Chang, Ching-Pin, Rozenfeld, Sofia, Sauvageau, Guy, Humphries, R. Keith, Lu, Ming, Lawrence, H. Jeffrey, Cleary, Michael L., Largman, Corey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 906
container_issue 5
container_start_page 898
container_title Nucleic acids research
container_volume 24
creator Shen, Wei-Fang
Chang, Ching-Pin
Rozenfeld, Sofia
Sauvageau, Guy
Humphries, R. Keith
Lu, Ming
Lawrence, H. Jeffrey
Cleary, Michael L.
Largman, Corey
description Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the Hox or Pbx1a proteins alone. The stabilities of the Hox-Pbx1a-DNA complexes vary >100-fold, with the proteins from the middle of the locus (Hoxb-5 and Hoxb-6) forming very stable complexes, while Hoxb-4, Hoxb-7 and Hoxb-8 form complexes of intermediate stability and proteins at the 3′-side of the locus (Hoxb-1-Hoxb-3) form complexes which are very unstable. Although Hox-b proteins containing longer linker sequences between the hexapeptide and homeodomains formed unstable complexes, shortening the linker did not confer complex stability. Homeodomain swapping experiments revealed that this motif does not independently determine complex stability. Naturally occurring variations within the hexapeptides of specific Hox proteins also do not explain complex stability differences. However, two core amino acids (tryptophan and methionine) which are absolutely conserved within the hexapeptide domains appear to be required for complex formation. Removal of N- and C-terminal flanking regions did not influence complex stability and the members of paralog group 4 (Hoxa-4, b-4, c-4 and d-4), which share highly conserved hexapeptides, linkers and homeodomains but different flanking regions, form complexes of similar stability. These data suggest that the structural features of Hox proteins which determine Hox-Pbx1a-DNA complex stability reside within the precise structural relationships between the homeodomain, hexapeptide and linker regions.
doi_str_mv 10.1093/nar/24.5.898
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_145726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19359915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-922c8594ef70acb49a021bc0f24d1bd8d06d187755e4961d44875f39beda44fa3</originalsourceid><addsrcrecordid>eNqNkUFv1DAQRi0EKkvhxhXJJ07N1nbs2D5wqJbSRapopIKEuFhOPGENSbzY3jb8e4J2tYJTe5rDe99oRh9CrylZUqLL89HGc8aXYqm0eoIWtKxYwXXFnqIFKYkoKOHqOXqR0g9CKKeCn6ATVRHChVqgm3WY8DoMEFwYrB9xHUMGPyZ8OW184zO-hR7a7O8Ar8Kw7WHCt9k2vvfZQ8L3Pm9w3UzYjg6__3TxEj3rbJ_g1WGeoi8fLj-v1sX1zdXH1cV10XKpcqEZa5XQHDpJbNtwbQmjTUs6xh1tnHKkclRJKQTMr1DHuZKiK3UDznLe2fIUvdvv3e6aAVwLY462N9voBxt_m2C9-Z-MfmO-hztDuZCsmvNvD_kYfu0gZTP41ELf2xHCLhkptXiUSHUptKbiYVESLhlhs3i2F9sYUorQHa-mxPxt1MyNGsaNMHOjs_7m30-P8qHCmRd77lOG6Yht_GkqWUph1l-_mfqKsapW2tTlHztfq_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17047202</pqid></control><display><type>article</type><title>Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shen, Wei-Fang ; Chang, Ching-Pin ; Rozenfeld, Sofia ; Sauvageau, Guy ; Humphries, R. Keith ; Lu, Ming ; Lawrence, H. Jeffrey ; Cleary, Michael L. ; Largman, Corey</creator><creatorcontrib>Shen, Wei-Fang ; Chang, Ching-Pin ; Rozenfeld, Sofia ; Sauvageau, Guy ; Humphries, R. Keith ; Lu, Ming ; Lawrence, H. Jeffrey ; Cleary, Michael L. ; Largman, Corey</creatorcontrib><description>Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the Hox or Pbx1a proteins alone. The stabilities of the Hox-Pbx1a-DNA complexes vary &gt;100-fold, with the proteins from the middle of the locus (Hoxb-5 and Hoxb-6) forming very stable complexes, while Hoxb-4, Hoxb-7 and Hoxb-8 form complexes of intermediate stability and proteins at the 3′-side of the locus (Hoxb-1-Hoxb-3) form complexes which are very unstable. Although Hox-b proteins containing longer linker sequences between the hexapeptide and homeodomains formed unstable complexes, shortening the linker did not confer complex stability. Homeodomain swapping experiments revealed that this motif does not independently determine complex stability. Naturally occurring variations within the hexapeptides of specific Hox proteins also do not explain complex stability differences. However, two core amino acids (tryptophan and methionine) which are absolutely conserved within the hexapeptide domains appear to be required for complex formation. Removal of N- and C-terminal flanking regions did not influence complex stability and the members of paralog group 4 (Hoxa-4, b-4, c-4 and d-4), which share highly conserved hexapeptides, linkers and homeodomains but different flanking regions, form complexes of similar stability. These data suggest that the structural features of Hox proteins which determine Hox-Pbx1a-DNA complex stability reside within the precise structural relationships between the homeodomain, hexapeptide and linker regions.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/24.5.898</identifier><identifier>PMID: 8600458</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Base Sequence ; DNA - metabolism ; DNA-Binding Proteins - metabolism ; Homeodomain Proteins - metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Pre-B-Cell Leukemia Transcription Factor 1 ; Protein Binding ; Proto-Oncogene Proteins - metabolism ; Sequence Analysis</subject><ispartof>Nucleic acids research, 1996-03, Vol.24 (5), p.898-906</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-922c8594ef70acb49a021bc0f24d1bd8d06d187755e4961d44875f39beda44fa3</citedby><cites>FETCH-LOGICAL-c478t-922c8594ef70acb49a021bc0f24d1bd8d06d187755e4961d44875f39beda44fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC145726/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC145726/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8600458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Wei-Fang</creatorcontrib><creatorcontrib>Chang, Ching-Pin</creatorcontrib><creatorcontrib>Rozenfeld, Sofia</creatorcontrib><creatorcontrib>Sauvageau, Guy</creatorcontrib><creatorcontrib>Humphries, R. Keith</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Lawrence, H. Jeffrey</creatorcontrib><creatorcontrib>Cleary, Michael L.</creatorcontrib><creatorcontrib>Largman, Corey</creatorcontrib><title>Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Research</addtitle><description>Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the Hox or Pbx1a proteins alone. The stabilities of the Hox-Pbx1a-DNA complexes vary &gt;100-fold, with the proteins from the middle of the locus (Hoxb-5 and Hoxb-6) forming very stable complexes, while Hoxb-4, Hoxb-7 and Hoxb-8 form complexes of intermediate stability and proteins at the 3′-side of the locus (Hoxb-1-Hoxb-3) form complexes which are very unstable. Although Hox-b proteins containing longer linker sequences between the hexapeptide and homeodomains formed unstable complexes, shortening the linker did not confer complex stability. Homeodomain swapping experiments revealed that this motif does not independently determine complex stability. Naturally occurring variations within the hexapeptides of specific Hox proteins also do not explain complex stability differences. However, two core amino acids (tryptophan and methionine) which are absolutely conserved within the hexapeptide domains appear to be required for complex formation. Removal of N- and C-terminal flanking regions did not influence complex stability and the members of paralog group 4 (Hoxa-4, b-4, c-4 and d-4), which share highly conserved hexapeptides, linkers and homeodomains but different flanking regions, form complexes of similar stability. These data suggest that the structural features of Hox proteins which determine Hox-Pbx1a-DNA complex stability reside within the precise structural relationships between the homeodomain, hexapeptide and linker regions.</description><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Macromolecular Substances</subject><subject>Molecular Sequence Data</subject><subject>Pre-B-Cell Leukemia Transcription Factor 1</subject><subject>Protein Binding</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Sequence Analysis</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQRi0EKkvhxhXJJ07N1nbs2D5wqJbSRapopIKEuFhOPGENSbzY3jb8e4J2tYJTe5rDe99oRh9CrylZUqLL89HGc8aXYqm0eoIWtKxYwXXFnqIFKYkoKOHqOXqR0g9CKKeCn6ATVRHChVqgm3WY8DoMEFwYrB9xHUMGPyZ8OW184zO-hR7a7O8Ar8Kw7WHCt9k2vvfZQ8L3Pm9w3UzYjg6__3TxEj3rbJ_g1WGeoi8fLj-v1sX1zdXH1cV10XKpcqEZa5XQHDpJbNtwbQmjTUs6xh1tnHKkclRJKQTMr1DHuZKiK3UDznLe2fIUvdvv3e6aAVwLY462N9voBxt_m2C9-Z-MfmO-hztDuZCsmvNvD_kYfu0gZTP41ELf2xHCLhkptXiUSHUptKbiYVESLhlhs3i2F9sYUorQHa-mxPxt1MyNGsaNMHOjs_7m30-P8qHCmRd77lOG6Yht_GkqWUph1l-_mfqKsapW2tTlHztfq_Y</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Shen, Wei-Fang</creator><creator>Chang, Ching-Pin</creator><creator>Rozenfeld, Sofia</creator><creator>Sauvageau, Guy</creator><creator>Humphries, R. Keith</creator><creator>Lu, Ming</creator><creator>Lawrence, H. Jeffrey</creator><creator>Cleary, Michael L.</creator><creator>Largman, Corey</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960301</creationdate><title>Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA</title><author>Shen, Wei-Fang ; Chang, Ching-Pin ; Rozenfeld, Sofia ; Sauvageau, Guy ; Humphries, R. Keith ; Lu, Ming ; Lawrence, H. Jeffrey ; Cleary, Michael L. ; Largman, Corey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-922c8594ef70acb49a021bc0f24d1bd8d06d187755e4961d44875f39beda44fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Macromolecular Substances</topic><topic>Molecular Sequence Data</topic><topic>Pre-B-Cell Leukemia Transcription Factor 1</topic><topic>Protein Binding</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Sequence Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Wei-Fang</creatorcontrib><creatorcontrib>Chang, Ching-Pin</creatorcontrib><creatorcontrib>Rozenfeld, Sofia</creatorcontrib><creatorcontrib>Sauvageau, Guy</creatorcontrib><creatorcontrib>Humphries, R. Keith</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Lawrence, H. Jeffrey</creatorcontrib><creatorcontrib>Cleary, Michael L.</creatorcontrib><creatorcontrib>Largman, Corey</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Wei-Fang</au><au>Chang, Ching-Pin</au><au>Rozenfeld, Sofia</au><au>Sauvageau, Guy</au><au>Humphries, R. Keith</au><au>Lu, Ming</au><au>Lawrence, H. Jeffrey</au><au>Cleary, Michael L.</au><au>Largman, Corey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Research</addtitle><date>1996-03-01</date><risdate>1996</risdate><volume>24</volume><issue>5</issue><spage>898</spage><epage>906</epage><pages>898-906</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Eight of the nine homeobox genes of the Hoxb locus encode proteins which contain a conserved hexapeptide motif upstream from the homeodomain. All eight proteins (Hoxb-1–Hoxb-8) bind to a target oligonucleotide in the presence of Pbx1a under conditions where minimal or no binding is detected for the Hox or Pbx1a proteins alone. The stabilities of the Hox-Pbx1a-DNA complexes vary &gt;100-fold, with the proteins from the middle of the locus (Hoxb-5 and Hoxb-6) forming very stable complexes, while Hoxb-4, Hoxb-7 and Hoxb-8 form complexes of intermediate stability and proteins at the 3′-side of the locus (Hoxb-1-Hoxb-3) form complexes which are very unstable. Although Hox-b proteins containing longer linker sequences between the hexapeptide and homeodomains formed unstable complexes, shortening the linker did not confer complex stability. Homeodomain swapping experiments revealed that this motif does not independently determine complex stability. Naturally occurring variations within the hexapeptides of specific Hox proteins also do not explain complex stability differences. However, two core amino acids (tryptophan and methionine) which are absolutely conserved within the hexapeptide domains appear to be required for complex formation. Removal of N- and C-terminal flanking regions did not influence complex stability and the members of paralog group 4 (Hoxa-4, b-4, c-4 and d-4), which share highly conserved hexapeptides, linkers and homeodomains but different flanking regions, form complexes of similar stability. These data suggest that the structural features of Hox proteins which determine Hox-Pbx1a-DNA complex stability reside within the precise structural relationships between the homeodomain, hexapeptide and linker regions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>8600458</pmid><doi>10.1093/nar/24.5.898</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 1996-03, Vol.24 (5), p.898-906
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_145726
source Oxford Journals Open Access Collection; MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Base Sequence
DNA - metabolism
DNA-Binding Proteins - metabolism
Homeodomain Proteins - metabolism
Macromolecular Substances
Molecular Sequence Data
Pre-B-Cell Leukemia Transcription Factor 1
Protein Binding
Proto-Oncogene Proteins - metabolism
Sequence Analysis
title Hox Homeodomain Proteins Exhibit Selective Complex Stabilities with Pbx and DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hox%20Homeodomain%20Proteins%20Exhibit%20Selective%20Complex%20Stabilities%20with%20Pbx%20and%20DNA&rft.jtitle=Nucleic%20acids%20research&rft.au=Shen,%20Wei-Fang&rft.date=1996-03-01&rft.volume=24&rft.issue=5&rft.spage=898&rft.epage=906&rft.pages=898-906&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/24.5.898&rft_dat=%3Cproquest_pubme%3E19359915%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17047202&rft_id=info:pmid/8600458&rfr_iscdi=true