Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper

Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2001-03, Vol.20 (5), p.1033-1041
Hauptverfasser: Thress, Kenneth, Song, Jaewhan, Morimoto, Richard I., Kornbluth, Sally
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue 5
container_start_page 1033
container_title The EMBO journal
container_volume 20
creator Thress, Kenneth
Song, Jaewhan
Morimoto, Richard I.
Kornbluth, Sally
description Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70‐mediated protein folding, physiological regulators of BAG‐1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG‐1 and inhibits Hsp70‐ mediated protein refolding. Scythe‐mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules.
doi_str_mv 10.1093/emboj/20.5.1033
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_145500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>374519371</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3108-8601e5a91b04ec0501a6a53d8b1ed07626144ab751bbb70bf50c0340513710a23</originalsourceid><addsrcrecordid>eNptkc1P3DAQxS1EBcu2Z24o4tBbYCaO7eTAoSC-KhASbc-WnZ1lvcraId5Q7X-Pl6VAq8qWLOu9n_U8j7F9hCOEmh_Twob5cQFHIt0532IjLCXkBSixzUZQSMxLrOpdthfjHABEpXCH7SIWHLBQI3ZxT0_UR2dbypyfOeuWLvgsTLOr2CnImpnpqA-esungmxfNrrIfzWo5o8z4SXZPa8Nn9mlq2khfXs8x-3Vx_vPsKr-5u7w--3aTdxyhyisJSMLUaKGkBgSgkUbwSWWRJqBkyluWxiqB1loFdiqgAV6CQK4QTMHH7GTzbjfYBU0a8svetLrr3cL0Kx2M038r3s30Q3jSWAoBkPivr3wfHgeKS71wsaG2NZ7CELWSddppkmN2-I9xHobep79prEWRlpTJdPAxzVuMP-NNhmpj-O1aWr3roNft6Zf2dAFa6HV7-vz29LsSNZdQJRQ2aEyUf6D-Q4D_4_wZkG6dUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195252566</pqid></control><display><type>article</type><title>Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Thress, Kenneth ; Song, Jaewhan ; Morimoto, Richard I. ; Kornbluth, Sally</creator><creatorcontrib>Thress, Kenneth ; Song, Jaewhan ; Morimoto, Richard I. ; Kornbluth, Sally</creatorcontrib><description>Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70‐mediated protein folding, physiological regulators of BAG‐1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG‐1 and inhibits Hsp70‐ mediated protein refolding. Scythe‐mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.5.1033</identifier><identifier>PMID: 11230127</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - metabolism ; Amino Acid Sequence ; Animals ; Apoptosis ; Carrier Proteins - chemistry ; Cytochrome c Group - metabolism ; DNA-Binding Proteins ; Drosophila Proteins ; HSP70 Heat-Shock Proteins - antagonists &amp; inhibitors ; HSP70 Heat-Shock Proteins - chemistry ; HSP70 Heat-Shock Proteins - metabolism ; Hsp70 inhibition ; Humans ; Kinetics ; Molecular Sequence Data ; Mutation ; Oocytes - metabolism ; Peptides - metabolism ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Reaper ; Recombinant Fusion Proteins ; Recombinant Proteins - antagonists &amp; inhibitors ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Scythe ; Sequence Alignment ; Sequence Homology, Amino Acid ; Signal Transduction ; Transcription Factors ; Xenopus ; Xenopus Proteins</subject><ispartof>The EMBO journal, 2001-03, Vol.20 (5), p.1033-1041</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Mar 01, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC145500/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC145500/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11230127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thress, Kenneth</creatorcontrib><creatorcontrib>Song, Jaewhan</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Kornbluth, Sally</creatorcontrib><title>Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70‐mediated protein folding, physiological regulators of BAG‐1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG‐1 and inhibits Hsp70‐ mediated protein refolding. Scythe‐mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Carrier Proteins - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>DNA-Binding Proteins</subject><subject>Drosophila Proteins</subject><subject>HSP70 Heat-Shock Proteins - antagonists &amp; inhibitors</subject><subject>HSP70 Heat-Shock Proteins - chemistry</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Hsp70 inhibition</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Oocytes - metabolism</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Reaper</subject><subject>Recombinant Fusion Proteins</subject><subject>Recombinant Proteins - antagonists &amp; inhibitors</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Scythe</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><subject>Transcription Factors</subject><subject>Xenopus</subject><subject>Xenopus Proteins</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkc1P3DAQxS1EBcu2Z24o4tBbYCaO7eTAoSC-KhASbc-WnZ1lvcraId5Q7X-Pl6VAq8qWLOu9n_U8j7F9hCOEmh_Twob5cQFHIt0532IjLCXkBSixzUZQSMxLrOpdthfjHABEpXCH7SIWHLBQI3ZxT0_UR2dbypyfOeuWLvgsTLOr2CnImpnpqA-esungmxfNrrIfzWo5o8z4SXZPa8Nn9mlq2khfXs8x-3Vx_vPsKr-5u7w--3aTdxyhyisJSMLUaKGkBgSgkUbwSWWRJqBkyluWxiqB1loFdiqgAV6CQK4QTMHH7GTzbjfYBU0a8svetLrr3cL0Kx2M038r3s30Q3jSWAoBkPivr3wfHgeKS71wsaG2NZ7CELWSddppkmN2-I9xHobep79prEWRlpTJdPAxzVuMP-NNhmpj-O1aWr3roNft6Zf2dAFa6HV7-vz29LsSNZdQJRQ2aEyUf6D-Q4D_4_wZkG6dUQ</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Thress, Kenneth</creator><creator>Song, Jaewhan</creator><creator>Morimoto, Richard I.</creator><creator>Kornbluth, Sally</creator><general>Nature Publishing Group UK</general><general>John Wiley &amp; Sons, Ltd</general><general>Springer Nature B.V</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010301</creationdate><title>Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper</title><author>Thress, Kenneth ; Song, Jaewhan ; Morimoto, Richard I. ; Kornbluth, Sally</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3108-8601e5a91b04ec0501a6a53d8b1ed07626144ab751bbb70bf50c0340513710a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Carrier Proteins - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>DNA-Binding Proteins</topic><topic>Drosophila Proteins</topic><topic>HSP70 Heat-Shock Proteins - antagonists &amp; inhibitors</topic><topic>HSP70 Heat-Shock Proteins - chemistry</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Hsp70 inhibition</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Oocytes - metabolism</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Reaper</topic><topic>Recombinant Fusion Proteins</topic><topic>Recombinant Proteins - antagonists &amp; inhibitors</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Scythe</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><topic>Transcription Factors</topic><topic>Xenopus</topic><topic>Xenopus Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thress, Kenneth</creatorcontrib><creatorcontrib>Song, Jaewhan</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Kornbluth, Sally</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thress, Kenneth</au><au>Song, Jaewhan</au><au>Morimoto, Richard I.</au><au>Kornbluth, Sally</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-03-01</date><risdate>2001</risdate><volume>20</volume><issue>5</issue><spage>1033</spage><epage>1041</epage><pages>1033-1041</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70‐mediated protein folding, physiological regulators of BAG‐1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG‐1 and inhibits Hsp70‐ mediated protein refolding. Scythe‐mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>11230127</pmid><doi>10.1093/emboj/20.5.1033</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2001-03, Vol.20 (5), p.1033-1041
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_145500
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - metabolism
Amino Acid Sequence
Animals
Apoptosis
Carrier Proteins - chemistry
Cytochrome c Group - metabolism
DNA-Binding Proteins
Drosophila Proteins
HSP70 Heat-Shock Proteins - antagonists & inhibitors
HSP70 Heat-Shock Proteins - chemistry
HSP70 Heat-Shock Proteins - metabolism
Hsp70 inhibition
Humans
Kinetics
Molecular Sequence Data
Mutation
Oocytes - metabolism
Peptides - metabolism
Protein Binding
Protein Folding
Protein Structure, Tertiary
Reaper
Recombinant Fusion Proteins
Recombinant Proteins - antagonists & inhibitors
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Scythe
Sequence Alignment
Sequence Homology, Amino Acid
Signal Transduction
Transcription Factors
Xenopus
Xenopus Proteins
title Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20inhibition%20of%20Hsp70%20chaperone%20function%20by%20Scythe%20and%20Reaper&rft.jtitle=The%20EMBO%20journal&rft.au=Thress,%20Kenneth&rft.date=2001-03-01&rft.volume=20&rft.issue=5&rft.spage=1033&rft.epage=1041&rft.pages=1033-1041&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.5.1033&rft_dat=%3Cproquest_pubme%3E374519371%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195252566&rft_id=info:pmid/11230127&rfr_iscdi=true