Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper
Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested tha...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2001-03, Vol.20 (5), p.1033-1041 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1041 |
---|---|
container_issue | 5 |
container_start_page | 1033 |
container_title | The EMBO journal |
container_volume | 20 |
creator | Thress, Kenneth Song, Jaewhan Morimoto, Richard I. Kornbluth, Sally |
description | Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70‐mediated protein folding, physiological regulators of BAG‐1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG‐1 and inhibits Hsp70‐ mediated protein refolding. Scythe‐mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules. |
doi_str_mv | 10.1093/emboj/20.5.1033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_145500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>374519371</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3108-8601e5a91b04ec0501a6a53d8b1ed07626144ab751bbb70bf50c0340513710a23</originalsourceid><addsrcrecordid>eNptkc1P3DAQxS1EBcu2Z24o4tBbYCaO7eTAoSC-KhASbc-WnZ1lvcraId5Q7X-Pl6VAq8qWLOu9n_U8j7F9hCOEmh_Twob5cQFHIt0532IjLCXkBSixzUZQSMxLrOpdthfjHABEpXCH7SIWHLBQI3ZxT0_UR2dbypyfOeuWLvgsTLOr2CnImpnpqA-esungmxfNrrIfzWo5o8z4SXZPa8Nn9mlq2khfXs8x-3Vx_vPsKr-5u7w--3aTdxyhyisJSMLUaKGkBgSgkUbwSWWRJqBkyluWxiqB1loFdiqgAV6CQK4QTMHH7GTzbjfYBU0a8svetLrr3cL0Kx2M038r3s30Q3jSWAoBkPivr3wfHgeKS71wsaG2NZ7CELWSddppkmN2-I9xHobep79prEWRlpTJdPAxzVuMP-NNhmpj-O1aWr3roNft6Zf2dAFa6HV7-vz29LsSNZdQJRQ2aEyUf6D-Q4D_4_wZkG6dUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195252566</pqid></control><display><type>article</type><title>Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Thress, Kenneth ; Song, Jaewhan ; Morimoto, Richard I. ; Kornbluth, Sally</creator><creatorcontrib>Thress, Kenneth ; Song, Jaewhan ; Morimoto, Richard I. ; Kornbluth, Sally</creatorcontrib><description>Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70‐mediated protein folding, physiological regulators of BAG‐1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG‐1 and inhibits Hsp70‐ mediated protein refolding. Scythe‐mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.5.1033</identifier><identifier>PMID: 11230127</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - metabolism ; Amino Acid Sequence ; Animals ; Apoptosis ; Carrier Proteins - chemistry ; Cytochrome c Group - metabolism ; DNA-Binding Proteins ; Drosophila Proteins ; HSP70 Heat-Shock Proteins - antagonists & inhibitors ; HSP70 Heat-Shock Proteins - chemistry ; HSP70 Heat-Shock Proteins - metabolism ; Hsp70 inhibition ; Humans ; Kinetics ; Molecular Sequence Data ; Mutation ; Oocytes - metabolism ; Peptides - metabolism ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Reaper ; Recombinant Fusion Proteins ; Recombinant Proteins - antagonists & inhibitors ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Scythe ; Sequence Alignment ; Sequence Homology, Amino Acid ; Signal Transduction ; Transcription Factors ; Xenopus ; Xenopus Proteins</subject><ispartof>The EMBO journal, 2001-03, Vol.20 (5), p.1033-1041</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Mar 01, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC145500/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC145500/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11230127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thress, Kenneth</creatorcontrib><creatorcontrib>Song, Jaewhan</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Kornbluth, Sally</creatorcontrib><title>Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70‐mediated protein folding, physiological regulators of BAG‐1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG‐1 and inhibits Hsp70‐ mediated protein refolding. Scythe‐mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Carrier Proteins - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>DNA-Binding Proteins</subject><subject>Drosophila Proteins</subject><subject>HSP70 Heat-Shock Proteins - antagonists & inhibitors</subject><subject>HSP70 Heat-Shock Proteins - chemistry</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Hsp70 inhibition</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Oocytes - metabolism</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Reaper</subject><subject>Recombinant Fusion Proteins</subject><subject>Recombinant Proteins - antagonists & inhibitors</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Scythe</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><subject>Transcription Factors</subject><subject>Xenopus</subject><subject>Xenopus Proteins</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkc1P3DAQxS1EBcu2Z24o4tBbYCaO7eTAoSC-KhASbc-WnZ1lvcraId5Q7X-Pl6VAq8qWLOu9n_U8j7F9hCOEmh_Twob5cQFHIt0532IjLCXkBSixzUZQSMxLrOpdthfjHABEpXCH7SIWHLBQI3ZxT0_UR2dbypyfOeuWLvgsTLOr2CnImpnpqA-esungmxfNrrIfzWo5o8z4SXZPa8Nn9mlq2khfXs8x-3Vx_vPsKr-5u7w--3aTdxyhyisJSMLUaKGkBgSgkUbwSWWRJqBkyluWxiqB1loFdiqgAV6CQK4QTMHH7GTzbjfYBU0a8svetLrr3cL0Kx2M038r3s30Q3jSWAoBkPivr3wfHgeKS71wsaG2NZ7CELWSddppkmN2-I9xHobep79prEWRlpTJdPAxzVuMP-NNhmpj-O1aWr3roNft6Zf2dAFa6HV7-vz29LsSNZdQJRQ2aEyUf6D-Q4D_4_wZkG6dUQ</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Thress, Kenneth</creator><creator>Song, Jaewhan</creator><creator>Morimoto, Richard I.</creator><creator>Kornbluth, Sally</creator><general>Nature Publishing Group UK</general><general>John Wiley & Sons, Ltd</general><general>Springer Nature B.V</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010301</creationdate><title>Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper</title><author>Thress, Kenneth ; Song, Jaewhan ; Morimoto, Richard I. ; Kornbluth, Sally</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3108-8601e5a91b04ec0501a6a53d8b1ed07626144ab751bbb70bf50c0340513710a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Carrier Proteins - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>DNA-Binding Proteins</topic><topic>Drosophila Proteins</topic><topic>HSP70 Heat-Shock Proteins - antagonists & inhibitors</topic><topic>HSP70 Heat-Shock Proteins - chemistry</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Hsp70 inhibition</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Oocytes - metabolism</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Reaper</topic><topic>Recombinant Fusion Proteins</topic><topic>Recombinant Proteins - antagonists & inhibitors</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Scythe</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><topic>Transcription Factors</topic><topic>Xenopus</topic><topic>Xenopus Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thress, Kenneth</creatorcontrib><creatorcontrib>Song, Jaewhan</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Kornbluth, Sally</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thress, Kenneth</au><au>Song, Jaewhan</au><au>Morimoto, Richard I.</au><au>Kornbluth, Sally</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-03-01</date><risdate>2001</risdate><volume>20</volume><issue>5</issue><spage>1033</spage><epage>1041</epage><pages>1033-1041</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co‐chaperone Hdj‐1. BAG‐1 was recently identified as a bcl‐2‐interacting, anti‐apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70‐mediated protein folding, physiological regulators of BAG‐1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG‐1 and inhibits Hsp70‐ mediated protein refolding. Scythe‐mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>11230127</pmid><doi>10.1093/emboj/20.5.1033</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2001-03, Vol.20 (5), p.1033-1041 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_145500 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphatases - chemistry Adenosine Triphosphatases - metabolism Amino Acid Sequence Animals Apoptosis Carrier Proteins - chemistry Cytochrome c Group - metabolism DNA-Binding Proteins Drosophila Proteins HSP70 Heat-Shock Proteins - antagonists & inhibitors HSP70 Heat-Shock Proteins - chemistry HSP70 Heat-Shock Proteins - metabolism Hsp70 inhibition Humans Kinetics Molecular Sequence Data Mutation Oocytes - metabolism Peptides - metabolism Protein Binding Protein Folding Protein Structure, Tertiary Reaper Recombinant Fusion Proteins Recombinant Proteins - antagonists & inhibitors Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Scythe Sequence Alignment Sequence Homology, Amino Acid Signal Transduction Transcription Factors Xenopus Xenopus Proteins |
title | Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20inhibition%20of%20Hsp70%20chaperone%20function%20by%20Scythe%20and%20Reaper&rft.jtitle=The%20EMBO%20journal&rft.au=Thress,%20Kenneth&rft.date=2001-03-01&rft.volume=20&rft.issue=5&rft.spage=1033&rft.epage=1041&rft.pages=1033-1041&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.5.1033&rft_dat=%3Cproquest_pubme%3E374519371%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195252566&rft_id=info:pmid/11230127&rfr_iscdi=true |