Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea
The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To inves...
Gespeichert in:
Veröffentlicht in: | The Plant cell 1999-10, Vol.11 (10), p.2045-2058 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2058 |
---|---|
container_issue | 10 |
container_start_page | 2045 |
container_title | The Plant cell |
container_volume | 11 |
creator | Dixon, K.P Xu, J.R Smirnoff, N Talbot, N.J |
description | The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol. |
doi_str_mv | 10.1105/tpc.11.10.2045 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_144108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3871096</jstor_id><sourcerecordid>3871096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-4f87148955afe0f56602612d2d73f5912ed264f9d7fb511df661c4a701d5e3693</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhSMEoqWwZQkWqthl8HViO1l0gaoClYpYQCV2lie2Mx5l4mA7oHkNnpgbpUIDG_tY_u6PzimKl0A3AJS_y1OHYoNPRmv-qDgHXrGStc33x6hpTctacDgrnqW0p5SChPZpcYaVDEE4L37fjsZOFo8xk-T7UQ9-7Mmk8-6XPiYSbT8POlvS2WFAFUmeYx8iMXNcwN1xsjGkQ8i-IylHmxLRoyF6mhYdop8P5cEajz0MmQaNY_zobJd9GMn2SD5rnDmFmHeW9NEnq58XT5wekn3xcF8U9x9uvl1_Ku--fLy9fn9XdlzwXNaukVA3LefaWeq4EJQJYIYZWTneArOGidq1RrotBzBOCOhqLSkYbivRVhfF1dp3mre4YYcORD2oKfqDjkcVtFf__ox-p_rwU0FdA22w_u1DfQw_ZpuyOvi02KRHG-akJDJCNhzBN_-B-zBHdDopBo3kICVFaLNCHdqZonV_FwGqlqgVRo1ieS5RY8Gr0_VP8DVbBC5XYJ9yiKftWEWlqtA-2grEXq-Y00HpJQJ1_5VRqChruWCCV38ARHm-aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218751770</pqid></control><display><type>article</type><title>Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dixon, K.P ; Xu, J.R ; Smirnoff, N ; Talbot, N.J</creator><creatorcontrib>Dixon, K.P ; Xu, J.R ; Smirnoff, N ; Talbot, N.J</creatorcontrib><description>The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.11.10.2045</identifier><identifier>PMID: 10521531</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>alditols ; Amino Acid Sequence ; amino acid sequences ; Appressoria ; arabitol ; Base Sequence ; cell differentiation ; cytochemistry ; DNA Primers ; fungal diseases of plants ; Fungal Proteins - genetics ; Fungi ; genbank/af184980 ; Gene expression regulation ; genes ; glycerol ; Infections ; Magnaporthe ; Magnaporthe - genetics ; Magnaporthe - metabolism ; Magnaporthe - pathogenicity ; Magnaporthe grisea ; mannitol ; mitogen activated protein kinase ; Mitogen-Activated Protein Kinases - genetics ; Molecular Sequence Data ; morphogenesis ; mutants ; Mutation ; Mycelium ; nucleotide sequences ; Oryza sativa ; osm1 gene ; Osmotic Pressure ; Plants - microbiology ; Rice ; Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid ; Signal Transduction ; Solutes ; Space life sciences ; stress ; Succinate Dehydrogenase ; trehalose ; turgor ; Turgor pressure ; Yeasts</subject><ispartof>The Plant cell, 1999-10, Vol.11 (10), p.2045-2058</ispartof><rights>Copyright 1999 American Society of Plant Physiologists</rights><rights>Copyright American Society of Plant Physiologists Oct 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-4f87148955afe0f56602612d2d73f5912ed264f9d7fb511df661c4a701d5e3693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3871096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3871096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10521531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixon, K.P</creatorcontrib><creatorcontrib>Xu, J.R</creatorcontrib><creatorcontrib>Smirnoff, N</creatorcontrib><creatorcontrib>Talbot, N.J</creatorcontrib><title>Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.</description><subject>alditols</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Appressoria</subject><subject>arabitol</subject><subject>Base Sequence</subject><subject>cell differentiation</subject><subject>cytochemistry</subject><subject>DNA Primers</subject><subject>fungal diseases of plants</subject><subject>Fungal Proteins - genetics</subject><subject>Fungi</subject><subject>genbank/af184980</subject><subject>Gene expression regulation</subject><subject>genes</subject><subject>glycerol</subject><subject>Infections</subject><subject>Magnaporthe</subject><subject>Magnaporthe - genetics</subject><subject>Magnaporthe - metabolism</subject><subject>Magnaporthe - pathogenicity</subject><subject>Magnaporthe grisea</subject><subject>mannitol</subject><subject>mitogen activated protein kinase</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Molecular Sequence Data</subject><subject>morphogenesis</subject><subject>mutants</subject><subject>Mutation</subject><subject>Mycelium</subject><subject>nucleotide sequences</subject><subject>Oryza sativa</subject><subject>osm1 gene</subject><subject>Osmotic Pressure</subject><subject>Plants - microbiology</subject><subject>Rice</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><subject>Solutes</subject><subject>Space life sciences</subject><subject>stress</subject><subject>Succinate Dehydrogenase</subject><subject>trehalose</subject><subject>turgor</subject><subject>Turgor pressure</subject><subject>Yeasts</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkc1u1DAUhSMEoqWwZQkWqthl8HViO1l0gaoClYpYQCV2lie2Mx5l4mA7oHkNnpgbpUIDG_tY_u6PzimKl0A3AJS_y1OHYoNPRmv-qDgHXrGStc33x6hpTctacDgrnqW0p5SChPZpcYaVDEE4L37fjsZOFo8xk-T7UQ9-7Mmk8-6XPiYSbT8POlvS2WFAFUmeYx8iMXNcwN1xsjGkQ8i-IylHmxLRoyF6mhYdop8P5cEajz0MmQaNY_zobJd9GMn2SD5rnDmFmHeW9NEnq58XT5wekn3xcF8U9x9uvl1_Ku--fLy9fn9XdlzwXNaukVA3LefaWeq4EJQJYIYZWTneArOGidq1RrotBzBOCOhqLSkYbivRVhfF1dp3mre4YYcORD2oKfqDjkcVtFf__ox-p_rwU0FdA22w_u1DfQw_ZpuyOvi02KRHG-akJDJCNhzBN_-B-zBHdDopBo3kICVFaLNCHdqZonV_FwGqlqgVRo1ieS5RY8Gr0_VP8DVbBC5XYJ9yiKftWEWlqtA-2grEXq-Y00HpJQJ1_5VRqChruWCCV38ARHm-aA</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Dixon, K.P</creator><creator>Xu, J.R</creator><creator>Smirnoff, N</creator><creator>Talbot, N.J</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991001</creationdate><title>Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea</title><author>Dixon, K.P ; Xu, J.R ; Smirnoff, N ; Talbot, N.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-4f87148955afe0f56602612d2d73f5912ed264f9d7fb511df661c4a701d5e3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>alditols</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Appressoria</topic><topic>arabitol</topic><topic>Base Sequence</topic><topic>cell differentiation</topic><topic>cytochemistry</topic><topic>DNA Primers</topic><topic>fungal diseases of plants</topic><topic>Fungal Proteins - genetics</topic><topic>Fungi</topic><topic>genbank/af184980</topic><topic>Gene expression regulation</topic><topic>genes</topic><topic>glycerol</topic><topic>Infections</topic><topic>Magnaporthe</topic><topic>Magnaporthe - genetics</topic><topic>Magnaporthe - metabolism</topic><topic>Magnaporthe - pathogenicity</topic><topic>Magnaporthe grisea</topic><topic>mannitol</topic><topic>mitogen activated protein kinase</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Molecular Sequence Data</topic><topic>morphogenesis</topic><topic>mutants</topic><topic>Mutation</topic><topic>Mycelium</topic><topic>nucleotide sequences</topic><topic>Oryza sativa</topic><topic>osm1 gene</topic><topic>Osmotic Pressure</topic><topic>Plants - microbiology</topic><topic>Rice</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><topic>Solutes</topic><topic>Space life sciences</topic><topic>stress</topic><topic>Succinate Dehydrogenase</topic><topic>trehalose</topic><topic>turgor</topic><topic>Turgor pressure</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixon, K.P</creatorcontrib><creatorcontrib>Xu, J.R</creatorcontrib><creatorcontrib>Smirnoff, N</creatorcontrib><creatorcontrib>Talbot, N.J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixon, K.P</au><au>Xu, J.R</au><au>Smirnoff, N</au><au>Talbot, N.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>11</volume><issue>10</issue><spage>2045</spage><epage>2058</epage><pages>2045-2058</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>10521531</pmid><doi>10.1105/tpc.11.10.2045</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 1999-10, Vol.11 (10), p.2045-2058 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_144108 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | alditols Amino Acid Sequence amino acid sequences Appressoria arabitol Base Sequence cell differentiation cytochemistry DNA Primers fungal diseases of plants Fungal Proteins - genetics Fungi genbank/af184980 Gene expression regulation genes glycerol Infections Magnaporthe Magnaporthe - genetics Magnaporthe - metabolism Magnaporthe - pathogenicity Magnaporthe grisea mannitol mitogen activated protein kinase Mitogen-Activated Protein Kinases - genetics Molecular Sequence Data morphogenesis mutants Mutation Mycelium nucleotide sequences Oryza sativa osm1 gene Osmotic Pressure Plants - microbiology Rice Saccharomyces cerevisiae Proteins Sequence Homology, Amino Acid Signal Transduction Solutes Space life sciences stress Succinate Dehydrogenase trehalose turgor Turgor pressure Yeasts |
title | Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20signaling%20pathways%20regulate%20cellular%20turgor%20during%20hyperosmotic%20stress%20and%20appressorium-mediated%20plant%20infection%20by%20Magnaporthe%20grisea&rft.jtitle=The%20Plant%20cell&rft.au=Dixon,%20K.P&rft.date=1999-10-01&rft.volume=11&rft.issue=10&rft.spage=2045&rft.epage=2058&rft.pages=2045-2058&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.11.10.2045&rft_dat=%3Cjstor_pubme%3E3871096%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218751770&rft_id=info:pmid/10521531&rft_jstor_id=3871096&rfr_iscdi=true |