Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea

The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 1999-10, Vol.11 (10), p.2045-2058
Hauptverfasser: Dixon, K.P, Xu, J.R, Smirnoff, N, Talbot, N.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2058
container_issue 10
container_start_page 2045
container_title The Plant cell
container_volume 11
creator Dixon, K.P
Xu, J.R
Smirnoff, N
Talbot, N.J
description The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.
doi_str_mv 10.1105/tpc.11.10.2045
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_144108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3871096</jstor_id><sourcerecordid>3871096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-4f87148955afe0f56602612d2d73f5912ed264f9d7fb511df661c4a701d5e3693</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhSMEoqWwZQkWqthl8HViO1l0gaoClYpYQCV2lie2Mx5l4mA7oHkNnpgbpUIDG_tY_u6PzimKl0A3AJS_y1OHYoNPRmv-qDgHXrGStc33x6hpTctacDgrnqW0p5SChPZpcYaVDEE4L37fjsZOFo8xk-T7UQ9-7Mmk8-6XPiYSbT8POlvS2WFAFUmeYx8iMXNcwN1xsjGkQ8i-IylHmxLRoyF6mhYdop8P5cEajz0MmQaNY_zobJd9GMn2SD5rnDmFmHeW9NEnq58XT5wekn3xcF8U9x9uvl1_Ku--fLy9fn9XdlzwXNaukVA3LefaWeq4EJQJYIYZWTneArOGidq1RrotBzBOCOhqLSkYbivRVhfF1dp3mre4YYcORD2oKfqDjkcVtFf__ox-p_rwU0FdA22w_u1DfQw_ZpuyOvi02KRHG-akJDJCNhzBN_-B-zBHdDopBo3kICVFaLNCHdqZonV_FwGqlqgVRo1ieS5RY8Gr0_VP8DVbBC5XYJ9yiKftWEWlqtA-2grEXq-Y00HpJQJ1_5VRqChruWCCV38ARHm-aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218751770</pqid></control><display><type>article</type><title>Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dixon, K.P ; Xu, J.R ; Smirnoff, N ; Talbot, N.J</creator><creatorcontrib>Dixon, K.P ; Xu, J.R ; Smirnoff, N ; Talbot, N.J</creatorcontrib><description>The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.11.10.2045</identifier><identifier>PMID: 10521531</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>alditols ; Amino Acid Sequence ; amino acid sequences ; Appressoria ; arabitol ; Base Sequence ; cell differentiation ; cytochemistry ; DNA Primers ; fungal diseases of plants ; Fungal Proteins - genetics ; Fungi ; genbank/af184980 ; Gene expression regulation ; genes ; glycerol ; Infections ; Magnaporthe ; Magnaporthe - genetics ; Magnaporthe - metabolism ; Magnaporthe - pathogenicity ; Magnaporthe grisea ; mannitol ; mitogen activated protein kinase ; Mitogen-Activated Protein Kinases - genetics ; Molecular Sequence Data ; morphogenesis ; mutants ; Mutation ; Mycelium ; nucleotide sequences ; Oryza sativa ; osm1 gene ; Osmotic Pressure ; Plants - microbiology ; Rice ; Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid ; Signal Transduction ; Solutes ; Space life sciences ; stress ; Succinate Dehydrogenase ; trehalose ; turgor ; Turgor pressure ; Yeasts</subject><ispartof>The Plant cell, 1999-10, Vol.11 (10), p.2045-2058</ispartof><rights>Copyright 1999 American Society of Plant Physiologists</rights><rights>Copyright American Society of Plant Physiologists Oct 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-4f87148955afe0f56602612d2d73f5912ed264f9d7fb511df661c4a701d5e3693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3871096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3871096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10521531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixon, K.P</creatorcontrib><creatorcontrib>Xu, J.R</creatorcontrib><creatorcontrib>Smirnoff, N</creatorcontrib><creatorcontrib>Talbot, N.J</creatorcontrib><title>Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.</description><subject>alditols</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Appressoria</subject><subject>arabitol</subject><subject>Base Sequence</subject><subject>cell differentiation</subject><subject>cytochemistry</subject><subject>DNA Primers</subject><subject>fungal diseases of plants</subject><subject>Fungal Proteins - genetics</subject><subject>Fungi</subject><subject>genbank/af184980</subject><subject>Gene expression regulation</subject><subject>genes</subject><subject>glycerol</subject><subject>Infections</subject><subject>Magnaporthe</subject><subject>Magnaporthe - genetics</subject><subject>Magnaporthe - metabolism</subject><subject>Magnaporthe - pathogenicity</subject><subject>Magnaporthe grisea</subject><subject>mannitol</subject><subject>mitogen activated protein kinase</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Molecular Sequence Data</subject><subject>morphogenesis</subject><subject>mutants</subject><subject>Mutation</subject><subject>Mycelium</subject><subject>nucleotide sequences</subject><subject>Oryza sativa</subject><subject>osm1 gene</subject><subject>Osmotic Pressure</subject><subject>Plants - microbiology</subject><subject>Rice</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><subject>Solutes</subject><subject>Space life sciences</subject><subject>stress</subject><subject>Succinate Dehydrogenase</subject><subject>trehalose</subject><subject>turgor</subject><subject>Turgor pressure</subject><subject>Yeasts</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkc1u1DAUhSMEoqWwZQkWqthl8HViO1l0gaoClYpYQCV2lie2Mx5l4mA7oHkNnpgbpUIDG_tY_u6PzimKl0A3AJS_y1OHYoNPRmv-qDgHXrGStc33x6hpTctacDgrnqW0p5SChPZpcYaVDEE4L37fjsZOFo8xk-T7UQ9-7Mmk8-6XPiYSbT8POlvS2WFAFUmeYx8iMXNcwN1xsjGkQ8i-IylHmxLRoyF6mhYdop8P5cEajz0MmQaNY_zobJd9GMn2SD5rnDmFmHeW9NEnq58XT5wekn3xcF8U9x9uvl1_Ku--fLy9fn9XdlzwXNaukVA3LefaWeq4EJQJYIYZWTneArOGidq1RrotBzBOCOhqLSkYbivRVhfF1dp3mre4YYcORD2oKfqDjkcVtFf__ox-p_rwU0FdA22w_u1DfQw_ZpuyOvi02KRHG-akJDJCNhzBN_-B-zBHdDopBo3kICVFaLNCHdqZonV_FwGqlqgVRo1ieS5RY8Gr0_VP8DVbBC5XYJ9yiKftWEWlqtA-2grEXq-Y00HpJQJ1_5VRqChruWCCV38ARHm-aA</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Dixon, K.P</creator><creator>Xu, J.R</creator><creator>Smirnoff, N</creator><creator>Talbot, N.J</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991001</creationdate><title>Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea</title><author>Dixon, K.P ; Xu, J.R ; Smirnoff, N ; Talbot, N.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-4f87148955afe0f56602612d2d73f5912ed264f9d7fb511df661c4a701d5e3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>alditols</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Appressoria</topic><topic>arabitol</topic><topic>Base Sequence</topic><topic>cell differentiation</topic><topic>cytochemistry</topic><topic>DNA Primers</topic><topic>fungal diseases of plants</topic><topic>Fungal Proteins - genetics</topic><topic>Fungi</topic><topic>genbank/af184980</topic><topic>Gene expression regulation</topic><topic>genes</topic><topic>glycerol</topic><topic>Infections</topic><topic>Magnaporthe</topic><topic>Magnaporthe - genetics</topic><topic>Magnaporthe - metabolism</topic><topic>Magnaporthe - pathogenicity</topic><topic>Magnaporthe grisea</topic><topic>mannitol</topic><topic>mitogen activated protein kinase</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Molecular Sequence Data</topic><topic>morphogenesis</topic><topic>mutants</topic><topic>Mutation</topic><topic>Mycelium</topic><topic>nucleotide sequences</topic><topic>Oryza sativa</topic><topic>osm1 gene</topic><topic>Osmotic Pressure</topic><topic>Plants - microbiology</topic><topic>Rice</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><topic>Solutes</topic><topic>Space life sciences</topic><topic>stress</topic><topic>Succinate Dehydrogenase</topic><topic>trehalose</topic><topic>turgor</topic><topic>Turgor pressure</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixon, K.P</creatorcontrib><creatorcontrib>Xu, J.R</creatorcontrib><creatorcontrib>Smirnoff, N</creatorcontrib><creatorcontrib>Talbot, N.J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixon, K.P</au><au>Xu, J.R</au><au>Smirnoff, N</au><au>Talbot, N.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>11</volume><issue>10</issue><spage>2045</spage><epage>2058</epage><pages>2045-2058</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>10521531</pmid><doi>10.1105/tpc.11.10.2045</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 1999-10, Vol.11 (10), p.2045-2058
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_144108
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects alditols
Amino Acid Sequence
amino acid sequences
Appressoria
arabitol
Base Sequence
cell differentiation
cytochemistry
DNA Primers
fungal diseases of plants
Fungal Proteins - genetics
Fungi
genbank/af184980
Gene expression regulation
genes
glycerol
Infections
Magnaporthe
Magnaporthe - genetics
Magnaporthe - metabolism
Magnaporthe - pathogenicity
Magnaporthe grisea
mannitol
mitogen activated protein kinase
Mitogen-Activated Protein Kinases - genetics
Molecular Sequence Data
morphogenesis
mutants
Mutation
Mycelium
nucleotide sequences
Oryza sativa
osm1 gene
Osmotic Pressure
Plants - microbiology
Rice
Saccharomyces cerevisiae Proteins
Sequence Homology, Amino Acid
Signal Transduction
Solutes
Space life sciences
stress
Succinate Dehydrogenase
trehalose
turgor
Turgor pressure
Yeasts
title Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20signaling%20pathways%20regulate%20cellular%20turgor%20during%20hyperosmotic%20stress%20and%20appressorium-mediated%20plant%20infection%20by%20Magnaporthe%20grisea&rft.jtitle=The%20Plant%20cell&rft.au=Dixon,%20K.P&rft.date=1999-10-01&rft.volume=11&rft.issue=10&rft.spage=2045&rft.epage=2058&rft.pages=2045-2058&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.11.10.2045&rft_dat=%3Cjstor_pubme%3E3871096%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218751770&rft_id=info:pmid/10521531&rft_jstor_id=3871096&rfr_iscdi=true