XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL

GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2006-04, Vol.25 (7), p.1426-1435
Hauptverfasser: Shiue, S.J, Kao, K.M, Leu, W.M, Chen, L.Y, Chan, N.L, Hu, N.T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1435
container_issue 7
container_start_page 1426
container_title The EMBO journal
container_volume 25
creator Shiue, S.J
Kao, K.M
Leu, W.M
Chen, L.Y
Chan, N.L
Hu, N.T
description GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of Xanthomonas campestris XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.
doi_str_mv 10.1038/sj.emboj.7601036
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1440322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67834729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6066-4c51cbedf38bb94ad79abc95c789acea792710da6f4d2379b1cc85b3b29fcc4f3</originalsourceid><addsrcrecordid>eNqFks1v0zAYhyMEYmVw5wQWB05L8UdsxxekUXUD1AESG-Vm2Y6TuqRxsVNG-OvxSLUNJLSTJfv5PX79vs6ypwhOESTlq7ie2o326ylnMG2we9kEFQzmGHJ6P5tAzFBeoFIcZI9iXEMIacnRw-wAMYophXySqa_bOAe-dY3f2OB-qd75DvTBNY0NtgJ6AMfnn4B2XeW65gh0vgeroQq-HaKLR6C1qoqg98D1EagYvXGj4tL1K5Dki8fZg1q10T7Zr4fZxcn8fPY2X3w8fTc7XuSGQcbywlBktK1qUmotClVxobQR1PBSKGMVF5gjWClWFxUmXGhkTEk10VjUxhQ1Ocxej97tTm9sZWzXB9XKbXAbFQbplZN_n3RuJRv_Q6KigATjJHi5FwT_fWdjLzcuGtu2qrN-FyXjJSk4FneCiCMOBS4T-OIfcO13oUtdkEhQzASHVxAcIRN8jMHW1yUjKK-mLONa_pmy3E85RZ7dfupNYD_WBIgRuHStHe4UyvnZm_c3cjRmY4p16RfcKvr_BeVjxsXe_ry-T4VvqWuEU7n8cCrPZid8-aVYyGXin498rbxUTXBRXnzGEJGkKylBJfkNV8Thsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195269708</pqid></control><display><type>article</type><title>XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL</title><source>Springer Nature OA Free Journals</source><creator>Shiue, S.J ; Kao, K.M ; Leu, W.M ; Chen, L.Y ; Chan, N.L ; Hu, N.T</creator><creatorcontrib>Shiue, S.J ; Kao, K.M ; Leu, W.M ; Chen, L.Y ; Chan, N.L ; Hu, N.T</creatorcontrib><description>GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of Xanthomonas campestris XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7601036</identifier><identifier>PMID: 16525507</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adenosine Diphosphate - chemistry ; Adenosine triphosphatase ; adenosine triphosphate ; Adenosine Triphosphate - chemistry ; adenosinetriphosphatase ; Adenylyl Imidodiphosphate - chemistry ; ATP ; ATP binding ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; binding capacity ; Binding sites ; Biopolymers - chemistry ; Deoxyribonucleic acid ; DNA ; EMBO20 ; enzyme activity ; GspE oligomerization ; GspE-GspL interaction ; Hydrolysis ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Molecular biology ; Mutation ; nucleoside triphosphatase ; plant pathogenic bacteria ; Protein Binding ; Protein Structure, Tertiary ; protein-protein interactions ; Proteins ; pyrophosphatases ; type II secretion system ; Type III secretion system ; Xanthomonas campestris ; Xanthomonas campestris - metabolism ; Xanthomonas campestris pv. campestris</subject><ispartof>The EMBO journal, 2006-04, Vol.25 (7), p.1426-1435</ispartof><rights>European Molecular Biology Organization 2006</rights><rights>Copyright © 2006 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Apr 5, 2006</rights><rights>Copyright © 2006, European Molecular Biology Organization 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6066-4c51cbedf38bb94ad79abc95c789acea792710da6f4d2379b1cc85b3b29fcc4f3</citedby><cites>FETCH-LOGICAL-c6066-4c51cbedf38bb94ad79abc95c789acea792710da6f4d2379b1cc85b3b29fcc4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440322/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440322/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/sj.emboj.7601036$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16525507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiue, S.J</creatorcontrib><creatorcontrib>Kao, K.M</creatorcontrib><creatorcontrib>Leu, W.M</creatorcontrib><creatorcontrib>Chen, L.Y</creatorcontrib><creatorcontrib>Chan, N.L</creatorcontrib><creatorcontrib>Hu, N.T</creatorcontrib><title>XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of Xanthomonas campestris XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.</description><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine triphosphatase</subject><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>adenosinetriphosphatase</subject><subject>Adenylyl Imidodiphosphate - chemistry</subject><subject>ATP</subject><subject>ATP binding</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>binding capacity</subject><subject>Binding sites</subject><subject>Biopolymers - chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>EMBO20</subject><subject>enzyme activity</subject><subject>GspE oligomerization</subject><subject>GspE-GspL interaction</subject><subject>Hydrolysis</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>nucleoside triphosphatase</subject><subject>plant pathogenic bacteria</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein-protein interactions</subject><subject>Proteins</subject><subject>pyrophosphatases</subject><subject>type II secretion system</subject><subject>Type III secretion system</subject><subject>Xanthomonas campestris</subject><subject>Xanthomonas campestris - metabolism</subject><subject>Xanthomonas campestris pv. campestris</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks1v0zAYhyMEYmVw5wQWB05L8UdsxxekUXUD1AESG-Vm2Y6TuqRxsVNG-OvxSLUNJLSTJfv5PX79vs6ypwhOESTlq7ie2o326ylnMG2we9kEFQzmGHJ6P5tAzFBeoFIcZI9iXEMIacnRw-wAMYophXySqa_bOAe-dY3f2OB-qd75DvTBNY0NtgJ6AMfnn4B2XeW65gh0vgeroQq-HaKLR6C1qoqg98D1EagYvXGj4tL1K5Dki8fZg1q10T7Zr4fZxcn8fPY2X3w8fTc7XuSGQcbywlBktK1qUmotClVxobQR1PBSKGMVF5gjWClWFxUmXGhkTEk10VjUxhQ1Ocxej97tTm9sZWzXB9XKbXAbFQbplZN_n3RuJRv_Q6KigATjJHi5FwT_fWdjLzcuGtu2qrN-FyXjJSk4FneCiCMOBS4T-OIfcO13oUtdkEhQzASHVxAcIRN8jMHW1yUjKK-mLONa_pmy3E85RZ7dfupNYD_WBIgRuHStHe4UyvnZm_c3cjRmY4p16RfcKvr_BeVjxsXe_ry-T4VvqWuEU7n8cCrPZid8-aVYyGXin498rbxUTXBRXnzGEJGkKylBJfkNV8Thsg</recordid><startdate>20060405</startdate><enddate>20060405</enddate><creator>Shiue, S.J</creator><creator>Kao, K.M</creator><creator>Leu, W.M</creator><creator>Chen, L.Y</creator><creator>Chan, N.L</creator><creator>Hu, N.T</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060405</creationdate><title>XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL</title><author>Shiue, S.J ; Kao, K.M ; Leu, W.M ; Chen, L.Y ; Chan, N.L ; Hu, N.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6066-4c51cbedf38bb94ad79abc95c789acea792710da6f4d2379b1cc85b3b29fcc4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine triphosphatase</topic><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>adenosinetriphosphatase</topic><topic>Adenylyl Imidodiphosphate - chemistry</topic><topic>ATP</topic><topic>ATP binding</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>binding capacity</topic><topic>Binding sites</topic><topic>Biopolymers - chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>EMBO20</topic><topic>enzyme activity</topic><topic>GspE oligomerization</topic><topic>GspE-GspL interaction</topic><topic>Hydrolysis</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>nucleoside triphosphatase</topic><topic>plant pathogenic bacteria</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein-protein interactions</topic><topic>Proteins</topic><topic>pyrophosphatases</topic><topic>type II secretion system</topic><topic>Type III secretion system</topic><topic>Xanthomonas campestris</topic><topic>Xanthomonas campestris - metabolism</topic><topic>Xanthomonas campestris pv. campestris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiue, S.J</creatorcontrib><creatorcontrib>Kao, K.M</creatorcontrib><creatorcontrib>Leu, W.M</creatorcontrib><creatorcontrib>Chen, L.Y</creatorcontrib><creatorcontrib>Chan, N.L</creatorcontrib><creatorcontrib>Hu, N.T</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shiue, S.J</au><au>Kao, K.M</au><au>Leu, W.M</au><au>Chen, L.Y</au><au>Chan, N.L</au><au>Hu, N.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2006-04-05</date><risdate>2006</risdate><volume>25</volume><issue>7</issue><spage>1426</spage><epage>1435</epage><pages>1426-1435</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of Xanthomonas campestris XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>16525507</pmid><doi>10.1038/sj.emboj.7601036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2006-04, Vol.25 (7), p.1426-1435
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1440322
source Springer Nature OA Free Journals
subjects Adenosine Diphosphate - chemistry
Adenosine triphosphatase
adenosine triphosphate
Adenosine Triphosphate - chemistry
adenosinetriphosphatase
Adenylyl Imidodiphosphate - chemistry
ATP
ATP binding
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
binding capacity
Binding sites
Biopolymers - chemistry
Deoxyribonucleic acid
DNA
EMBO20
enzyme activity
GspE oligomerization
GspE-GspL interaction
Hydrolysis
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Molecular biology
Mutation
nucleoside triphosphatase
plant pathogenic bacteria
Protein Binding
Protein Structure, Tertiary
protein-protein interactions
Proteins
pyrophosphatases
type II secretion system
Type III secretion system
Xanthomonas campestris
Xanthomonas campestris - metabolism
Xanthomonas campestris pv. campestris
title XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XpsE%20oligomerization%20triggered%20by%20ATP%20binding,%20not%20hydrolysis,%20leads%20to%20its%20association%20with%20XpsL&rft.jtitle=The%20EMBO%20journal&rft.au=Shiue,%20S.J&rft.date=2006-04-05&rft.volume=25&rft.issue=7&rft.spage=1426&rft.epage=1435&rft.pages=1426-1435&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7601036&rft_dat=%3Cproquest_C6C%3E67834729%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195269708&rft_id=info:pmid/16525507&rfr_iscdi=true