XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL
GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2006-04, Vol.25 (7), p.1426-1435 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1435 |
---|---|
container_issue | 7 |
container_start_page | 1426 |
container_title | The EMBO journal |
container_volume | 25 |
creator | Shiue, S.J Kao, K.M Leu, W.M Chen, L.Y Chan, N.L Hu, N.T |
description | GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of
Xanthomonas campestris
XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis. |
doi_str_mv | 10.1038/sj.emboj.7601036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1440322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67834729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6066-4c51cbedf38bb94ad79abc95c789acea792710da6f4d2379b1cc85b3b29fcc4f3</originalsourceid><addsrcrecordid>eNqFks1v0zAYhyMEYmVw5wQWB05L8UdsxxekUXUD1AESG-Vm2Y6TuqRxsVNG-OvxSLUNJLSTJfv5PX79vs6ypwhOESTlq7ie2o326ylnMG2we9kEFQzmGHJ6P5tAzFBeoFIcZI9iXEMIacnRw-wAMYophXySqa_bOAe-dY3f2OB-qd75DvTBNY0NtgJ6AMfnn4B2XeW65gh0vgeroQq-HaKLR6C1qoqg98D1EagYvXGj4tL1K5Dki8fZg1q10T7Zr4fZxcn8fPY2X3w8fTc7XuSGQcbywlBktK1qUmotClVxobQR1PBSKGMVF5gjWClWFxUmXGhkTEk10VjUxhQ1Ocxej97tTm9sZWzXB9XKbXAbFQbplZN_n3RuJRv_Q6KigATjJHi5FwT_fWdjLzcuGtu2qrN-FyXjJSk4FneCiCMOBS4T-OIfcO13oUtdkEhQzASHVxAcIRN8jMHW1yUjKK-mLONa_pmy3E85RZ7dfupNYD_WBIgRuHStHe4UyvnZm_c3cjRmY4p16RfcKvr_BeVjxsXe_ry-T4VvqWuEU7n8cCrPZid8-aVYyGXin498rbxUTXBRXnzGEJGkKylBJfkNV8Thsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195269708</pqid></control><display><type>article</type><title>XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL</title><source>Springer Nature OA Free Journals</source><creator>Shiue, S.J ; Kao, K.M ; Leu, W.M ; Chen, L.Y ; Chan, N.L ; Hu, N.T</creator><creatorcontrib>Shiue, S.J ; Kao, K.M ; Leu, W.M ; Chen, L.Y ; Chan, N.L ; Hu, N.T</creatorcontrib><description>GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of
Xanthomonas campestris
XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7601036</identifier><identifier>PMID: 16525507</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Adenosine Diphosphate - chemistry ; Adenosine triphosphatase ; adenosine triphosphate ; Adenosine Triphosphate - chemistry ; adenosinetriphosphatase ; Adenylyl Imidodiphosphate - chemistry ; ATP ; ATP binding ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; binding capacity ; Binding sites ; Biopolymers - chemistry ; Deoxyribonucleic acid ; DNA ; EMBO20 ; enzyme activity ; GspE oligomerization ; GspE-GspL interaction ; Hydrolysis ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Molecular biology ; Mutation ; nucleoside triphosphatase ; plant pathogenic bacteria ; Protein Binding ; Protein Structure, Tertiary ; protein-protein interactions ; Proteins ; pyrophosphatases ; type II secretion system ; Type III secretion system ; Xanthomonas campestris ; Xanthomonas campestris - metabolism ; Xanthomonas campestris pv. campestris</subject><ispartof>The EMBO journal, 2006-04, Vol.25 (7), p.1426-1435</ispartof><rights>European Molecular Biology Organization 2006</rights><rights>Copyright © 2006 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Apr 5, 2006</rights><rights>Copyright © 2006, European Molecular Biology Organization 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6066-4c51cbedf38bb94ad79abc95c789acea792710da6f4d2379b1cc85b3b29fcc4f3</citedby><cites>FETCH-LOGICAL-c6066-4c51cbedf38bb94ad79abc95c789acea792710da6f4d2379b1cc85b3b29fcc4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440322/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440322/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/sj.emboj.7601036$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16525507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiue, S.J</creatorcontrib><creatorcontrib>Kao, K.M</creatorcontrib><creatorcontrib>Leu, W.M</creatorcontrib><creatorcontrib>Chen, L.Y</creatorcontrib><creatorcontrib>Chan, N.L</creatorcontrib><creatorcontrib>Hu, N.T</creatorcontrib><title>XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of
Xanthomonas campestris
XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.</description><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine triphosphatase</subject><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>adenosinetriphosphatase</subject><subject>Adenylyl Imidodiphosphate - chemistry</subject><subject>ATP</subject><subject>ATP binding</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>binding capacity</subject><subject>Binding sites</subject><subject>Biopolymers - chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>EMBO20</subject><subject>enzyme activity</subject><subject>GspE oligomerization</subject><subject>GspE-GspL interaction</subject><subject>Hydrolysis</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>nucleoside triphosphatase</subject><subject>plant pathogenic bacteria</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein-protein interactions</subject><subject>Proteins</subject><subject>pyrophosphatases</subject><subject>type II secretion system</subject><subject>Type III secretion system</subject><subject>Xanthomonas campestris</subject><subject>Xanthomonas campestris - metabolism</subject><subject>Xanthomonas campestris pv. campestris</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks1v0zAYhyMEYmVw5wQWB05L8UdsxxekUXUD1AESG-Vm2Y6TuqRxsVNG-OvxSLUNJLSTJfv5PX79vs6ypwhOESTlq7ie2o326ylnMG2we9kEFQzmGHJ6P5tAzFBeoFIcZI9iXEMIacnRw-wAMYophXySqa_bOAe-dY3f2OB-qd75DvTBNY0NtgJ6AMfnn4B2XeW65gh0vgeroQq-HaKLR6C1qoqg98D1EagYvXGj4tL1K5Dki8fZg1q10T7Zr4fZxcn8fPY2X3w8fTc7XuSGQcbywlBktK1qUmotClVxobQR1PBSKGMVF5gjWClWFxUmXGhkTEk10VjUxhQ1Ocxej97tTm9sZWzXB9XKbXAbFQbplZN_n3RuJRv_Q6KigATjJHi5FwT_fWdjLzcuGtu2qrN-FyXjJSk4FneCiCMOBS4T-OIfcO13oUtdkEhQzASHVxAcIRN8jMHW1yUjKK-mLONa_pmy3E85RZ7dfupNYD_WBIgRuHStHe4UyvnZm_c3cjRmY4p16RfcKvr_BeVjxsXe_ry-T4VvqWuEU7n8cCrPZid8-aVYyGXin498rbxUTXBRXnzGEJGkKylBJfkNV8Thsg</recordid><startdate>20060405</startdate><enddate>20060405</enddate><creator>Shiue, S.J</creator><creator>Kao, K.M</creator><creator>Leu, W.M</creator><creator>Chen, L.Y</creator><creator>Chan, N.L</creator><creator>Hu, N.T</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060405</creationdate><title>XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL</title><author>Shiue, S.J ; Kao, K.M ; Leu, W.M ; Chen, L.Y ; Chan, N.L ; Hu, N.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6066-4c51cbedf38bb94ad79abc95c789acea792710da6f4d2379b1cc85b3b29fcc4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine triphosphatase</topic><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>adenosinetriphosphatase</topic><topic>Adenylyl Imidodiphosphate - chemistry</topic><topic>ATP</topic><topic>ATP binding</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>binding capacity</topic><topic>Binding sites</topic><topic>Biopolymers - chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>EMBO20</topic><topic>enzyme activity</topic><topic>GspE oligomerization</topic><topic>GspE-GspL interaction</topic><topic>Hydrolysis</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>nucleoside triphosphatase</topic><topic>plant pathogenic bacteria</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein-protein interactions</topic><topic>Proteins</topic><topic>pyrophosphatases</topic><topic>type II secretion system</topic><topic>Type III secretion system</topic><topic>Xanthomonas campestris</topic><topic>Xanthomonas campestris - metabolism</topic><topic>Xanthomonas campestris pv. campestris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiue, S.J</creatorcontrib><creatorcontrib>Kao, K.M</creatorcontrib><creatorcontrib>Leu, W.M</creatorcontrib><creatorcontrib>Chen, L.Y</creatorcontrib><creatorcontrib>Chan, N.L</creatorcontrib><creatorcontrib>Hu, N.T</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shiue, S.J</au><au>Kao, K.M</au><au>Leu, W.M</au><au>Chen, L.Y</au><au>Chan, N.L</au><au>Hu, N.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2006-04-05</date><risdate>2006</risdate><volume>25</volume><issue>7</issue><spage>1426</spage><epage>1435</epage><pages>1426-1435</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of
Xanthomonas campestris
XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>16525507</pmid><doi>10.1038/sj.emboj.7601036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2006-04, Vol.25 (7), p.1426-1435 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1440322 |
source | Springer Nature OA Free Journals |
subjects | Adenosine Diphosphate - chemistry Adenosine triphosphatase adenosine triphosphate Adenosine Triphosphate - chemistry adenosinetriphosphatase Adenylyl Imidodiphosphate - chemistry ATP ATP binding Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism binding capacity Binding sites Biopolymers - chemistry Deoxyribonucleic acid DNA EMBO20 enzyme activity GspE oligomerization GspE-GspL interaction Hydrolysis Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Molecular biology Mutation nucleoside triphosphatase plant pathogenic bacteria Protein Binding Protein Structure, Tertiary protein-protein interactions Proteins pyrophosphatases type II secretion system Type III secretion system Xanthomonas campestris Xanthomonas campestris - metabolism Xanthomonas campestris pv. campestris |
title | XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XpsE%20oligomerization%20triggered%20by%20ATP%20binding,%20not%20hydrolysis,%20leads%20to%20its%20association%20with%20XpsL&rft.jtitle=The%20EMBO%20journal&rft.au=Shiue,%20S.J&rft.date=2006-04-05&rft.volume=25&rft.issue=7&rft.spage=1426&rft.epage=1435&rft.pages=1426-1435&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7601036&rft_dat=%3Cproquest_C6C%3E67834729%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195269708&rft_id=info:pmid/16525507&rfr_iscdi=true |