The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-04, Vol.103 (16), p.6252-6257
Hauptverfasser: Karchner, Sibel I., Franks, Diana G., Kennedy, Sean W., Hahn, Mark E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6257
container_issue 16
container_start_page 6252
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Karchner, Sibel I.
Franks, Diana G.
Kennedy, Sean W.
Hahn, Mark E.
description 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [³H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxinlike compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.
doi_str_mv 10.1073/pnas.0509950103
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1435364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30051453</jstor_id><sourcerecordid>30051453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-e72cdc24ba175883af4717263dded0bd14ee4c0df804468f4649c3875bfac78c3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotvCmRPI4sAt7Ti2E4cDUls-ilSEVMrZcuxx61U23tpJxf739WpXLXAajeY3T_PmEfKGwTGDlp-sR5OPQULXSWDAn5EFg45VjejgOVkA1G2lRC0OyGHOSwDopIKX5IA1DTRKigW5ub5F-iMOaOfBJHpmcsjUx0Q_B-8x4TgFM5Qm_gkj_YVjDlO4D9OGlvYsJJc_0quyTaOnU1E6TZuBXmxcitakPo70Ci2up5hekRfeDBlf7-sR-f31y_X5RXX589v389PLyspOTBW2tXW2Fr1hrVSKGy9a1tYNdw4d9I4JRGHBeQVCNMqL4tRy1creG9sqy4_Ip53ueu5X6GwxkMyg1ymsTNroaIL-dzKGW30T7zUTXPJGFIEPe4EU72bMk16FbHEYzIhxzpp1BawZK-D7_8BlnNNYzOkaWBHr-BY62UE2xZwT-sdLGOhtgnqboH5KsGy8-9vAE7-PrABvd8Ayl78-zjmAZEJy_gAJ7KJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201353931</pqid></control><display><type>article</type><title>The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Karchner, Sibel I. ; Franks, Diana G. ; Kennedy, Sean W. ; Hahn, Mark E.</creator><creatorcontrib>Karchner, Sibel I. ; Franks, Diana G. ; Kennedy, Sean W. ; Hahn, Mark E.</creatorcontrib><description>2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [³H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxinlike compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0509950103</identifier><identifier>PMID: 16606854</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alanine - chemistry ; Alanine - genetics ; Amino Acid Sequence ; Amino Acid Substitution ; Amino acids ; Animals ; Aves ; Binding sites ; Biological Sciences ; Birds ; Cell culture techniques ; Charadriiformes - genetics ; Charadriiformes - physiology ; Chickens ; Chickens - genetics ; Chickens - physiology ; Complementary DNA ; COS cells ; Dioxins ; Drug Resistance - genetics ; Gallus gallus ; Hydrocarbons ; Ligands ; Mice ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Polychlorinated Dibenzodioxins - metabolism ; Polychlorinated Dibenzodioxins - toxicity ; Proteins ; Receptors, Aryl Hydrocarbon - genetics ; Receptors, Aryl Hydrocarbon - metabolism ; Receptors, Aryl Hydrocarbon - physiology ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Species differences ; Sterna hirundo ; Toxicology ; Transactivation ; Transcriptional Activation ; Transfection ; Valine - chemistry ; Valine - genetics ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-04, Vol.103 (16), p.6252-6257</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 18, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-e72cdc24ba175883af4717263dded0bd14ee4c0df804468f4649c3875bfac78c3</citedby><cites>FETCH-LOGICAL-c594t-e72cdc24ba175883af4717263dded0bd14ee4c0df804468f4649c3875bfac78c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30051453$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30051453$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16606854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karchner, Sibel I.</creatorcontrib><creatorcontrib>Franks, Diana G.</creatorcontrib><creatorcontrib>Kennedy, Sean W.</creatorcontrib><creatorcontrib>Hahn, Mark E.</creatorcontrib><title>The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [³H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxinlike compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.</description><subject>Alanine - chemistry</subject><subject>Alanine - genetics</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Aves</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Birds</subject><subject>Cell culture techniques</subject><subject>Charadriiformes - genetics</subject><subject>Charadriiformes - physiology</subject><subject>Chickens</subject><subject>Chickens - genetics</subject><subject>Chickens - physiology</subject><subject>Complementary DNA</subject><subject>COS cells</subject><subject>Dioxins</subject><subject>Drug Resistance - genetics</subject><subject>Gallus gallus</subject><subject>Hydrocarbons</subject><subject>Ligands</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Polychlorinated Dibenzodioxins - metabolism</subject><subject>Polychlorinated Dibenzodioxins - toxicity</subject><subject>Proteins</subject><subject>Receptors, Aryl Hydrocarbon - genetics</subject><subject>Receptors, Aryl Hydrocarbon - metabolism</subject><subject>Receptors, Aryl Hydrocarbon - physiology</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Species differences</subject><subject>Sterna hirundo</subject><subject>Toxicology</subject><subject>Transactivation</subject><subject>Transcriptional Activation</subject><subject>Transfection</subject><subject>Valine - chemistry</subject><subject>Valine - genetics</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EotvCmRPI4sAt7Ti2E4cDUls-ilSEVMrZcuxx61U23tpJxf739WpXLXAajeY3T_PmEfKGwTGDlp-sR5OPQULXSWDAn5EFg45VjejgOVkA1G2lRC0OyGHOSwDopIKX5IA1DTRKigW5ub5F-iMOaOfBJHpmcsjUx0Q_B-8x4TgFM5Qm_gkj_YVjDlO4D9OGlvYsJJc_0quyTaOnU1E6TZuBXmxcitakPo70Ci2up5hekRfeDBlf7-sR-f31y_X5RXX589v389PLyspOTBW2tXW2Fr1hrVSKGy9a1tYNdw4d9I4JRGHBeQVCNMqL4tRy1creG9sqy4_Ip53ueu5X6GwxkMyg1ymsTNroaIL-dzKGW30T7zUTXPJGFIEPe4EU72bMk16FbHEYzIhxzpp1BawZK-D7_8BlnNNYzOkaWBHr-BY62UE2xZwT-sdLGOhtgnqboH5KsGy8-9vAE7-PrABvd8Ayl78-zjmAZEJy_gAJ7KJc</recordid><startdate>20060418</startdate><enddate>20060418</enddate><creator>Karchner, Sibel I.</creator><creator>Franks, Diana G.</creator><creator>Kennedy, Sean W.</creator><creator>Hahn, Mark E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U7</scope><scope>5PM</scope></search><sort><creationdate>20060418</creationdate><title>The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor</title><author>Karchner, Sibel I. ; Franks, Diana G. ; Kennedy, Sean W. ; Hahn, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-e72cdc24ba175883af4717263dded0bd14ee4c0df804468f4649c3875bfac78c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alanine - chemistry</topic><topic>Alanine - genetics</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Aves</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Birds</topic><topic>Cell culture techniques</topic><topic>Charadriiformes - genetics</topic><topic>Charadriiformes - physiology</topic><topic>Chickens</topic><topic>Chickens - genetics</topic><topic>Chickens - physiology</topic><topic>Complementary DNA</topic><topic>COS cells</topic><topic>Dioxins</topic><topic>Drug Resistance - genetics</topic><topic>Gallus gallus</topic><topic>Hydrocarbons</topic><topic>Ligands</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Polychlorinated Dibenzodioxins - metabolism</topic><topic>Polychlorinated Dibenzodioxins - toxicity</topic><topic>Proteins</topic><topic>Receptors, Aryl Hydrocarbon - genetics</topic><topic>Receptors, Aryl Hydrocarbon - metabolism</topic><topic>Receptors, Aryl Hydrocarbon - physiology</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Species differences</topic><topic>Sterna hirundo</topic><topic>Toxicology</topic><topic>Transactivation</topic><topic>Transcriptional Activation</topic><topic>Transfection</topic><topic>Valine - chemistry</topic><topic>Valine - genetics</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karchner, Sibel I.</creatorcontrib><creatorcontrib>Franks, Diana G.</creatorcontrib><creatorcontrib>Kennedy, Sean W.</creatorcontrib><creatorcontrib>Hahn, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Toxicology Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karchner, Sibel I.</au><au>Franks, Diana G.</au><au>Kennedy, Sean W.</au><au>Hahn, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-04-18</date><risdate>2006</risdate><volume>103</volume><issue>16</issue><spage>6252</spage><epage>6257</epage><pages>6252-6257</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [³H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxinlike compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16606854</pmid><doi>10.1073/pnas.0509950103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-04, Vol.103 (16), p.6252-6257
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1435364
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alanine - chemistry
Alanine - genetics
Amino Acid Sequence
Amino Acid Substitution
Amino acids
Animals
Aves
Binding sites
Biological Sciences
Birds
Cell culture techniques
Charadriiformes - genetics
Charadriiformes - physiology
Chickens
Chickens - genetics
Chickens - physiology
Complementary DNA
COS cells
Dioxins
Drug Resistance - genetics
Gallus gallus
Hydrocarbons
Ligands
Mice
Molecular Sequence Data
Mutagenesis, Site-Directed
Mutation
Polychlorinated Dibenzodioxins - metabolism
Polychlorinated Dibenzodioxins - toxicity
Proteins
Receptors, Aryl Hydrocarbon - genetics
Receptors, Aryl Hydrocarbon - metabolism
Receptors, Aryl Hydrocarbon - physiology
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Species differences
Sterna hirundo
Toxicology
Transactivation
Transcriptional Activation
Transfection
Valine - chemistry
Valine - genetics
Vertebrates
title The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Molecular%20Basis%20for%20Differential%20Dioxin%20Sensitivity%20in%20Birds:%20Role%20of%20the%20Aryl%20Hydrocarbon%20Receptor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Karchner,%20Sibel%20I.&rft.date=2006-04-18&rft.volume=103&rft.issue=16&rft.spage=6252&rft.epage=6257&rft.pages=6252-6257&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0509950103&rft_dat=%3Cjstor_pubme%3E30051453%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201353931&rft_id=info:pmid/16606854&rft_jstor_id=30051453&rfr_iscdi=true