The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAH...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2006-04, Vol.103 (16), p.6252-6257 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6257 |
---|---|
container_issue | 16 |
container_start_page | 6252 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Karchner, Sibel I. Franks, Diana G. Kennedy, Sean W. Hahn, Mark E. |
description | 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [³H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxinlike compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife. |
doi_str_mv | 10.1073/pnas.0509950103 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1435364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30051453</jstor_id><sourcerecordid>30051453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-e72cdc24ba175883af4717263dded0bd14ee4c0df804468f4649c3875bfac78c3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotvCmRPI4sAt7Ti2E4cDUls-ilSEVMrZcuxx61U23tpJxf739WpXLXAajeY3T_PmEfKGwTGDlp-sR5OPQULXSWDAn5EFg45VjejgOVkA1G2lRC0OyGHOSwDopIKX5IA1DTRKigW5ub5F-iMOaOfBJHpmcsjUx0Q_B-8x4TgFM5Qm_gkj_YVjDlO4D9OGlvYsJJc_0quyTaOnU1E6TZuBXmxcitakPo70Ci2up5hekRfeDBlf7-sR-f31y_X5RXX589v389PLyspOTBW2tXW2Fr1hrVSKGy9a1tYNdw4d9I4JRGHBeQVCNMqL4tRy1creG9sqy4_Ip53ueu5X6GwxkMyg1ymsTNroaIL-dzKGW30T7zUTXPJGFIEPe4EU72bMk16FbHEYzIhxzpp1BawZK-D7_8BlnNNYzOkaWBHr-BY62UE2xZwT-sdLGOhtgnqboH5KsGy8-9vAE7-PrABvd8Ayl78-zjmAZEJy_gAJ7KJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201353931</pqid></control><display><type>article</type><title>The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Karchner, Sibel I. ; Franks, Diana G. ; Kennedy, Sean W. ; Hahn, Mark E.</creator><creatorcontrib>Karchner, Sibel I. ; Franks, Diana G. ; Kennedy, Sean W. ; Hahn, Mark E.</creatorcontrib><description>2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [³H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxinlike compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0509950103</identifier><identifier>PMID: 16606854</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alanine - chemistry ; Alanine - genetics ; Amino Acid Sequence ; Amino Acid Substitution ; Amino acids ; Animals ; Aves ; Binding sites ; Biological Sciences ; Birds ; Cell culture techniques ; Charadriiformes - genetics ; Charadriiformes - physiology ; Chickens ; Chickens - genetics ; Chickens - physiology ; Complementary DNA ; COS cells ; Dioxins ; Drug Resistance - genetics ; Gallus gallus ; Hydrocarbons ; Ligands ; Mice ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Polychlorinated Dibenzodioxins - metabolism ; Polychlorinated Dibenzodioxins - toxicity ; Proteins ; Receptors, Aryl Hydrocarbon - genetics ; Receptors, Aryl Hydrocarbon - metabolism ; Receptors, Aryl Hydrocarbon - physiology ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Species differences ; Sterna hirundo ; Toxicology ; Transactivation ; Transcriptional Activation ; Transfection ; Valine - chemistry ; Valine - genetics ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-04, Vol.103 (16), p.6252-6257</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 18, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-e72cdc24ba175883af4717263dded0bd14ee4c0df804468f4649c3875bfac78c3</citedby><cites>FETCH-LOGICAL-c594t-e72cdc24ba175883af4717263dded0bd14ee4c0df804468f4649c3875bfac78c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30051453$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30051453$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16606854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karchner, Sibel I.</creatorcontrib><creatorcontrib>Franks, Diana G.</creatorcontrib><creatorcontrib>Kennedy, Sean W.</creatorcontrib><creatorcontrib>Hahn, Mark E.</creatorcontrib><title>The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [³H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxinlike compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.</description><subject>Alanine - chemistry</subject><subject>Alanine - genetics</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Aves</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Birds</subject><subject>Cell culture techniques</subject><subject>Charadriiformes - genetics</subject><subject>Charadriiformes - physiology</subject><subject>Chickens</subject><subject>Chickens - genetics</subject><subject>Chickens - physiology</subject><subject>Complementary DNA</subject><subject>COS cells</subject><subject>Dioxins</subject><subject>Drug Resistance - genetics</subject><subject>Gallus gallus</subject><subject>Hydrocarbons</subject><subject>Ligands</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Polychlorinated Dibenzodioxins - metabolism</subject><subject>Polychlorinated Dibenzodioxins - toxicity</subject><subject>Proteins</subject><subject>Receptors, Aryl Hydrocarbon - genetics</subject><subject>Receptors, Aryl Hydrocarbon - metabolism</subject><subject>Receptors, Aryl Hydrocarbon - physiology</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Species differences</subject><subject>Sterna hirundo</subject><subject>Toxicology</subject><subject>Transactivation</subject><subject>Transcriptional Activation</subject><subject>Transfection</subject><subject>Valine - chemistry</subject><subject>Valine - genetics</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EotvCmRPI4sAt7Ti2E4cDUls-ilSEVMrZcuxx61U23tpJxf739WpXLXAajeY3T_PmEfKGwTGDlp-sR5OPQULXSWDAn5EFg45VjejgOVkA1G2lRC0OyGHOSwDopIKX5IA1DTRKigW5ub5F-iMOaOfBJHpmcsjUx0Q_B-8x4TgFM5Qm_gkj_YVjDlO4D9OGlvYsJJc_0quyTaOnU1E6TZuBXmxcitakPo70Ci2up5hekRfeDBlf7-sR-f31y_X5RXX589v389PLyspOTBW2tXW2Fr1hrVSKGy9a1tYNdw4d9I4JRGHBeQVCNMqL4tRy1creG9sqy4_Ip53ueu5X6GwxkMyg1ymsTNroaIL-dzKGW30T7zUTXPJGFIEPe4EU72bMk16FbHEYzIhxzpp1BawZK-D7_8BlnNNYzOkaWBHr-BY62UE2xZwT-sdLGOhtgnqboH5KsGy8-9vAE7-PrABvd8Ayl78-zjmAZEJy_gAJ7KJc</recordid><startdate>20060418</startdate><enddate>20060418</enddate><creator>Karchner, Sibel I.</creator><creator>Franks, Diana G.</creator><creator>Kennedy, Sean W.</creator><creator>Hahn, Mark E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U7</scope><scope>5PM</scope></search><sort><creationdate>20060418</creationdate><title>The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor</title><author>Karchner, Sibel I. ; Franks, Diana G. ; Kennedy, Sean W. ; Hahn, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-e72cdc24ba175883af4717263dded0bd14ee4c0df804468f4649c3875bfac78c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alanine - chemistry</topic><topic>Alanine - genetics</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Aves</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Birds</topic><topic>Cell culture techniques</topic><topic>Charadriiformes - genetics</topic><topic>Charadriiformes - physiology</topic><topic>Chickens</topic><topic>Chickens - genetics</topic><topic>Chickens - physiology</topic><topic>Complementary DNA</topic><topic>COS cells</topic><topic>Dioxins</topic><topic>Drug Resistance - genetics</topic><topic>Gallus gallus</topic><topic>Hydrocarbons</topic><topic>Ligands</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Polychlorinated Dibenzodioxins - metabolism</topic><topic>Polychlorinated Dibenzodioxins - toxicity</topic><topic>Proteins</topic><topic>Receptors, Aryl Hydrocarbon - genetics</topic><topic>Receptors, Aryl Hydrocarbon - metabolism</topic><topic>Receptors, Aryl Hydrocarbon - physiology</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Species differences</topic><topic>Sterna hirundo</topic><topic>Toxicology</topic><topic>Transactivation</topic><topic>Transcriptional Activation</topic><topic>Transfection</topic><topic>Valine - chemistry</topic><topic>Valine - genetics</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karchner, Sibel I.</creatorcontrib><creatorcontrib>Franks, Diana G.</creatorcontrib><creatorcontrib>Kennedy, Sean W.</creatorcontrib><creatorcontrib>Hahn, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Toxicology Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karchner, Sibel I.</au><au>Franks, Diana G.</au><au>Kennedy, Sean W.</au><au>Hahn, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-04-18</date><risdate>2006</risdate><volume>103</volume><issue>16</issue><spage>6252</spage><epage>6257</epage><pages>6252-6257</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [³H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxinlike compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16606854</pmid><doi>10.1073/pnas.0509950103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-04, Vol.103 (16), p.6252-6257 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1435364 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alanine - chemistry Alanine - genetics Amino Acid Sequence Amino Acid Substitution Amino acids Animals Aves Binding sites Biological Sciences Birds Cell culture techniques Charadriiformes - genetics Charadriiformes - physiology Chickens Chickens - genetics Chickens - physiology Complementary DNA COS cells Dioxins Drug Resistance - genetics Gallus gallus Hydrocarbons Ligands Mice Molecular Sequence Data Mutagenesis, Site-Directed Mutation Polychlorinated Dibenzodioxins - metabolism Polychlorinated Dibenzodioxins - toxicity Proteins Receptors, Aryl Hydrocarbon - genetics Receptors, Aryl Hydrocarbon - metabolism Receptors, Aryl Hydrocarbon - physiology Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Species differences Sterna hirundo Toxicology Transactivation Transcriptional Activation Transfection Valine - chemistry Valine - genetics Vertebrates |
title | The Molecular Basis for Differential Dioxin Sensitivity in Birds: Role of the Aryl Hydrocarbon Receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Molecular%20Basis%20for%20Differential%20Dioxin%20Sensitivity%20in%20Birds:%20Role%20of%20the%20Aryl%20Hydrocarbon%20Receptor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Karchner,%20Sibel%20I.&rft.date=2006-04-18&rft.volume=103&rft.issue=16&rft.spage=6252&rft.epage=6257&rft.pages=6252-6257&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0509950103&rft_dat=%3Cjstor_pubme%3E30051453%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201353931&rft_id=info:pmid/16606854&rft_jstor_id=30051453&rfr_iscdi=true |