Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin
By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous c...
Gespeichert in:
Veröffentlicht in: | Biophys. J.; (United States) 1984-02, Vol.45 (2), p.473-479 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 2 |
container_start_page | 473 |
container_title | Biophys. J.; (United States) |
container_volume | 45 |
creator | LoBrutto, R. Wei, Y.H. Yoshida, S. Van Camp, H.L. Scholes, C.P. King, T.E. |
description | By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15–25 K range. |
doi_str_mv | 10.1016/S0006-3495(84)84171-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1434857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349584841715</els_id><sourcerecordid>80953017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4645-3b733cd3296d48717451ec58c91ac0db79d33a04411ae59d9250d06b52503f823</originalsourceid><addsrcrecordid>eNqFkttu1DAQhiMEKtvCI1SKEELtRcCO7cS-AaFqOUiVQByuLcee7BoSe2t7V90n4LVxNqsVXPVqJM834_ln_qK4xOg1Rrh58x0h1FSECnbF6TWnuMUVe1QsMKN1hRBvHheLE_K0OI_xF0K4ZgifFWcNqZHA7aL4sxxAp-BduVFBjWrlIFldBojeKaehKq-WX79V14eXYQem_G0PSCx9X-qw9ytwucDZFHLw99ZAZrUfO-tUsrlx8qXeJ6_XwY9QzoyKUCpnyjHXDz6jz4onvRoiPD_Gi-Lnh-WPm0_V7ZePn2_e31aaNpRVpGsJ0YbUojGUt7ilDINmXAusNDJdKwwhClGKsQImjMh6DWo6liPpeU0uirdz3822G8FocCmoQW6CHVXYS6-s_D_j7Fqu_E5iSihnbW7wYm7gY7IyaptAr7V3Lq9RNjwvm9AMvTr-EvzdFmKSo40ahkE58NsoORKMINw-CGLCBa6bJoNsBnXwMQboTyNjJCc_yIMf5HRsyak8-EGyXHf5r95T1dEAOf_ymFdRq6EP-eg2njAuRF7z9P27GYN8m52FMCmH7A9jwyTcePvAIH8BOrTTNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13891266</pqid></control><display><type>article</type><title>Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>LoBrutto, R. ; Wei, Y.H. ; Yoshida, S. ; Van Camp, H.L. ; Scholes, C.P. ; King, T.E.</creator><creatorcontrib>LoBrutto, R. ; Wei, Y.H. ; Yoshida, S. ; Van Camp, H.L. ; Scholes, C.P. ; King, T.E. ; State Univ. of New York, Albany</creatorcontrib><description>By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15–25 K range.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(84)84171-5</identifier><identifier>PMID: 6320917</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>ACTIVATION ENERGY ; Animals ; BASIC BIOLOGICAL SCIENCES ; BIOCHEMICAL REACTION KINETICS ; Biological and medical sciences ; CARBON COMPOUNDS ; CARBON MONOXIDE ; CARBON OXIDES ; CARBOXYLIC ACIDS ; CHALCOGENIDES ; CHEMICAL REACTIONS ; COPPER ; CRYOGENICS ; cytochrome c oxidase ; CYTOCHROME OXIDASE ; DECOMPOSITION ; E.S.R ; ELECTRON SPIN RESONANCE ; Electron Spin Resonance Spectroscopy ; Electron Transport Complex IV - metabolism ; ELEMENTS ; ENERGY ; ENZYMES ; Fundamental and applied biological sciences. Psychology ; GLOBIN ; HAEM DEHYDROGENASES ; HEME ; Heme - metabolism ; HETEROCYCLIC ACIDS ; HETEROCYCLIC COMPOUNDS ; In Vitro Techniques ; Interactions. Associations ; Intermolecular phenomena ; KINETICS ; MAGNETIC RESONANCE ; METALS ; Molecular biophysics ; MYOGLOBIN ; Myoglobin - metabolism ; NITRIC OXIDE ; Nitric Oxide - metabolism ; NITROGEN COMPOUNDS ; NITROGEN OXIDES ; NONMETALS ; ORGANIC ACIDS ; ORGANIC COMPOUNDS ; ORGANIC NITROGEN COMPOUNDS ; OXIDES ; OXIDOREDUCTASES ; OXYGEN ; OXYGEN COMPOUNDS ; PHOTOCHEMICAL REACTIONS ; PHOTOLYSIS ; PIGMENTS ; PORPHYRINS ; PROTEINS ; REACTION KINETICS ; RESONANCE ; Thermodynamics ; TRANSITION ELEMENTS 550200 -- Biochemistry ; VERY LOW TEMPERATURE</subject><ispartof>Biophys. J.; (United States), 1984-02, Vol.45 (2), p.473-479</ispartof><rights>1984 The Biophysical Society</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4645-3b733cd3296d48717451ec58c91ac0db79d33a04411ae59d9250d06b52503f823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1434857/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(84)84171-5$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8994876$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6320917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6834934$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LoBrutto, R.</creatorcontrib><creatorcontrib>Wei, Y.H.</creatorcontrib><creatorcontrib>Yoshida, S.</creatorcontrib><creatorcontrib>Van Camp, H.L.</creatorcontrib><creatorcontrib>Scholes, C.P.</creatorcontrib><creatorcontrib>King, T.E.</creatorcontrib><creatorcontrib>State Univ. of New York, Albany</creatorcontrib><title>Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin</title><title>Biophys. J.; (United States)</title><addtitle>Biophys J</addtitle><description>By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15–25 K range.</description><subject>ACTIVATION ENERGY</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOCHEMICAL REACTION KINETICS</subject><subject>Biological and medical sciences</subject><subject>CARBON COMPOUNDS</subject><subject>CARBON MONOXIDE</subject><subject>CARBON OXIDES</subject><subject>CARBOXYLIC ACIDS</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>COPPER</subject><subject>CRYOGENICS</subject><subject>cytochrome c oxidase</subject><subject>CYTOCHROME OXIDASE</subject><subject>DECOMPOSITION</subject><subject>E.S.R</subject><subject>ELECTRON SPIN RESONANCE</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>ELEMENTS</subject><subject>ENERGY</subject><subject>ENZYMES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GLOBIN</subject><subject>HAEM DEHYDROGENASES</subject><subject>HEME</subject><subject>Heme - metabolism</subject><subject>HETEROCYCLIC ACIDS</subject><subject>HETEROCYCLIC COMPOUNDS</subject><subject>In Vitro Techniques</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>KINETICS</subject><subject>MAGNETIC RESONANCE</subject><subject>METALS</subject><subject>Molecular biophysics</subject><subject>MYOGLOBIN</subject><subject>Myoglobin - metabolism</subject><subject>NITRIC OXIDE</subject><subject>Nitric Oxide - metabolism</subject><subject>NITROGEN COMPOUNDS</subject><subject>NITROGEN OXIDES</subject><subject>NONMETALS</subject><subject>ORGANIC ACIDS</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>OXIDES</subject><subject>OXIDOREDUCTASES</subject><subject>OXYGEN</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHOTOCHEMICAL REACTIONS</subject><subject>PHOTOLYSIS</subject><subject>PIGMENTS</subject><subject>PORPHYRINS</subject><subject>PROTEINS</subject><subject>REACTION KINETICS</subject><subject>RESONANCE</subject><subject>Thermodynamics</subject><subject>TRANSITION ELEMENTS 550200 -- Biochemistry</subject><subject>VERY LOW TEMPERATURE</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkttu1DAQhiMEKtvCI1SKEELtRcCO7cS-AaFqOUiVQByuLcee7BoSe2t7V90n4LVxNqsVXPVqJM834_ln_qK4xOg1Rrh58x0h1FSECnbF6TWnuMUVe1QsMKN1hRBvHheLE_K0OI_xF0K4ZgifFWcNqZHA7aL4sxxAp-BduVFBjWrlIFldBojeKaehKq-WX79V14eXYQem_G0PSCx9X-qw9ytwucDZFHLw99ZAZrUfO-tUsrlx8qXeJ6_XwY9QzoyKUCpnyjHXDz6jz4onvRoiPD_Gi-Lnh-WPm0_V7ZePn2_e31aaNpRVpGsJ0YbUojGUt7ilDINmXAusNDJdKwwhClGKsQImjMh6DWo6liPpeU0uirdz3822G8FocCmoQW6CHVXYS6-s_D_j7Fqu_E5iSihnbW7wYm7gY7IyaptAr7V3Lq9RNjwvm9AMvTr-EvzdFmKSo40ahkE58NsoORKMINw-CGLCBa6bJoNsBnXwMQboTyNjJCc_yIMf5HRsyak8-EGyXHf5r95T1dEAOf_ymFdRq6EP-eg2njAuRF7z9P27GYN8m52FMCmH7A9jwyTcePvAIH8BOrTTNw</recordid><startdate>19840201</startdate><enddate>19840201</enddate><creator>LoBrutto, R.</creator><creator>Wei, Y.H.</creator><creator>Yoshida, S.</creator><creator>Van Camp, H.L.</creator><creator>Scholes, C.P.</creator><creator>King, T.E.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19840201</creationdate><title>Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin</title><author>LoBrutto, R. ; Wei, Y.H. ; Yoshida, S. ; Van Camp, H.L. ; Scholes, C.P. ; King, T.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4645-3b733cd3296d48717451ec58c91ac0db79d33a04411ae59d9250d06b52503f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>ACTIVATION ENERGY</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOCHEMICAL REACTION KINETICS</topic><topic>Biological and medical sciences</topic><topic>CARBON COMPOUNDS</topic><topic>CARBON MONOXIDE</topic><topic>CARBON OXIDES</topic><topic>CARBOXYLIC ACIDS</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>COPPER</topic><topic>CRYOGENICS</topic><topic>cytochrome c oxidase</topic><topic>CYTOCHROME OXIDASE</topic><topic>DECOMPOSITION</topic><topic>E.S.R</topic><topic>ELECTRON SPIN RESONANCE</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>ELEMENTS</topic><topic>ENERGY</topic><topic>ENZYMES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GLOBIN</topic><topic>HAEM DEHYDROGENASES</topic><topic>HEME</topic><topic>Heme - metabolism</topic><topic>HETEROCYCLIC ACIDS</topic><topic>HETEROCYCLIC COMPOUNDS</topic><topic>In Vitro Techniques</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>KINETICS</topic><topic>MAGNETIC RESONANCE</topic><topic>METALS</topic><topic>Molecular biophysics</topic><topic>MYOGLOBIN</topic><topic>Myoglobin - metabolism</topic><topic>NITRIC OXIDE</topic><topic>Nitric Oxide - metabolism</topic><topic>NITROGEN COMPOUNDS</topic><topic>NITROGEN OXIDES</topic><topic>NONMETALS</topic><topic>ORGANIC ACIDS</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>OXIDES</topic><topic>OXIDOREDUCTASES</topic><topic>OXYGEN</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHOTOCHEMICAL REACTIONS</topic><topic>PHOTOLYSIS</topic><topic>PIGMENTS</topic><topic>PORPHYRINS</topic><topic>PROTEINS</topic><topic>REACTION KINETICS</topic><topic>RESONANCE</topic><topic>Thermodynamics</topic><topic>TRANSITION ELEMENTS 550200 -- Biochemistry</topic><topic>VERY LOW TEMPERATURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LoBrutto, R.</creatorcontrib><creatorcontrib>Wei, Y.H.</creatorcontrib><creatorcontrib>Yoshida, S.</creatorcontrib><creatorcontrib>Van Camp, H.L.</creatorcontrib><creatorcontrib>Scholes, C.P.</creatorcontrib><creatorcontrib>King, T.E.</creatorcontrib><creatorcontrib>State Univ. of New York, Albany</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophys. J.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LoBrutto, R.</au><au>Wei, Y.H.</au><au>Yoshida, S.</au><au>Van Camp, H.L.</au><au>Scholes, C.P.</au><au>King, T.E.</au><aucorp>State Univ. of New York, Albany</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin</atitle><jtitle>Biophys. J.; (United States)</jtitle><addtitle>Biophys J</addtitle><date>1984-02-01</date><risdate>1984</risdate><volume>45</volume><issue>2</issue><spage>473</spage><epage>479</epage><pages>473-479</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15–25 K range.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>6320917</pmid><doi>10.1016/S0006-3495(84)84171-5</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophys. J.; (United States), 1984-02, Vol.45 (2), p.473-479 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1434857 |
source | MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | ACTIVATION ENERGY Animals BASIC BIOLOGICAL SCIENCES BIOCHEMICAL REACTION KINETICS Biological and medical sciences CARBON COMPOUNDS CARBON MONOXIDE CARBON OXIDES CARBOXYLIC ACIDS CHALCOGENIDES CHEMICAL REACTIONS COPPER CRYOGENICS cytochrome c oxidase CYTOCHROME OXIDASE DECOMPOSITION E.S.R ELECTRON SPIN RESONANCE Electron Spin Resonance Spectroscopy Electron Transport Complex IV - metabolism ELEMENTS ENERGY ENZYMES Fundamental and applied biological sciences. Psychology GLOBIN HAEM DEHYDROGENASES HEME Heme - metabolism HETEROCYCLIC ACIDS HETEROCYCLIC COMPOUNDS In Vitro Techniques Interactions. Associations Intermolecular phenomena KINETICS MAGNETIC RESONANCE METALS Molecular biophysics MYOGLOBIN Myoglobin - metabolism NITRIC OXIDE Nitric Oxide - metabolism NITROGEN COMPOUNDS NITROGEN OXIDES NONMETALS ORGANIC ACIDS ORGANIC COMPOUNDS ORGANIC NITROGEN COMPOUNDS OXIDES OXIDOREDUCTASES OXYGEN OXYGEN COMPOUNDS PHOTOCHEMICAL REACTIONS PHOTOLYSIS PIGMENTS PORPHYRINS PROTEINS REACTION KINETICS RESONANCE Thermodynamics TRANSITION ELEMENTS 550200 -- Biochemistry VERY LOW TEMPERATURE |
title | Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20paramagnetic%20resonance-%20(EPR-)%20resolved%20kinetics%20of%20cryogenic%20nitric%20oxide%20recombination%20to%20cytochrome%20c%20oxidase%20and%20myoglobin&rft.jtitle=Biophys.%20J.;%20(United%20States)&rft.au=LoBrutto,%20R.&rft.aucorp=State%20Univ.%20of%20New%20York,%20Albany&rft.date=1984-02-01&rft.volume=45&rft.issue=2&rft.spage=473&rft.epage=479&rft.pages=473-479&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(84)84171-5&rft_dat=%3Cproquest_pubme%3E80953017%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13891266&rft_id=info:pmid/6320917&rft_els_id=S0006349584841715&rfr_iscdi=true |