Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin

By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophys. J.; (United States) 1984-02, Vol.45 (2), p.473-479
Hauptverfasser: LoBrutto, R., Wei, Y.H., Yoshida, S., Van Camp, H.L., Scholes, C.P., King, T.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 2
container_start_page 473
container_title Biophys. J.; (United States)
container_volume 45
creator LoBrutto, R.
Wei, Y.H.
Yoshida, S.
Van Camp, H.L.
Scholes, C.P.
King, T.E.
description By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15–25 K range.
doi_str_mv 10.1016/S0006-3495(84)84171-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1434857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349584841715</els_id><sourcerecordid>80953017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4645-3b733cd3296d48717451ec58c91ac0db79d33a04411ae59d9250d06b52503f823</originalsourceid><addsrcrecordid>eNqFkttu1DAQhiMEKtvCI1SKEELtRcCO7cS-AaFqOUiVQByuLcee7BoSe2t7V90n4LVxNqsVXPVqJM834_ln_qK4xOg1Rrh58x0h1FSECnbF6TWnuMUVe1QsMKN1hRBvHheLE_K0OI_xF0K4ZgifFWcNqZHA7aL4sxxAp-BduVFBjWrlIFldBojeKaehKq-WX79V14eXYQem_G0PSCx9X-qw9ytwucDZFHLw99ZAZrUfO-tUsrlx8qXeJ6_XwY9QzoyKUCpnyjHXDz6jz4onvRoiPD_Gi-Lnh-WPm0_V7ZePn2_e31aaNpRVpGsJ0YbUojGUt7ilDINmXAusNDJdKwwhClGKsQImjMh6DWo6liPpeU0uirdz3822G8FocCmoQW6CHVXYS6-s_D_j7Fqu_E5iSihnbW7wYm7gY7IyaptAr7V3Lq9RNjwvm9AMvTr-EvzdFmKSo40ahkE58NsoORKMINw-CGLCBa6bJoNsBnXwMQboTyNjJCc_yIMf5HRsyak8-EGyXHf5r95T1dEAOf_ymFdRq6EP-eg2njAuRF7z9P27GYN8m52FMCmH7A9jwyTcePvAIH8BOrTTNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13891266</pqid></control><display><type>article</type><title>Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>LoBrutto, R. ; Wei, Y.H. ; Yoshida, S. ; Van Camp, H.L. ; Scholes, C.P. ; King, T.E.</creator><creatorcontrib>LoBrutto, R. ; Wei, Y.H. ; Yoshida, S. ; Van Camp, H.L. ; Scholes, C.P. ; King, T.E. ; State Univ. of New York, Albany</creatorcontrib><description>By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15–25 K range.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(84)84171-5</identifier><identifier>PMID: 6320917</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>ACTIVATION ENERGY ; Animals ; BASIC BIOLOGICAL SCIENCES ; BIOCHEMICAL REACTION KINETICS ; Biological and medical sciences ; CARBON COMPOUNDS ; CARBON MONOXIDE ; CARBON OXIDES ; CARBOXYLIC ACIDS ; CHALCOGENIDES ; CHEMICAL REACTIONS ; COPPER ; CRYOGENICS ; cytochrome c oxidase ; CYTOCHROME OXIDASE ; DECOMPOSITION ; E.S.R ; ELECTRON SPIN RESONANCE ; Electron Spin Resonance Spectroscopy ; Electron Transport Complex IV - metabolism ; ELEMENTS ; ENERGY ; ENZYMES ; Fundamental and applied biological sciences. Psychology ; GLOBIN ; HAEM DEHYDROGENASES ; HEME ; Heme - metabolism ; HETEROCYCLIC ACIDS ; HETEROCYCLIC COMPOUNDS ; In Vitro Techniques ; Interactions. Associations ; Intermolecular phenomena ; KINETICS ; MAGNETIC RESONANCE ; METALS ; Molecular biophysics ; MYOGLOBIN ; Myoglobin - metabolism ; NITRIC OXIDE ; Nitric Oxide - metabolism ; NITROGEN COMPOUNDS ; NITROGEN OXIDES ; NONMETALS ; ORGANIC ACIDS ; ORGANIC COMPOUNDS ; ORGANIC NITROGEN COMPOUNDS ; OXIDES ; OXIDOREDUCTASES ; OXYGEN ; OXYGEN COMPOUNDS ; PHOTOCHEMICAL REACTIONS ; PHOTOLYSIS ; PIGMENTS ; PORPHYRINS ; PROTEINS ; REACTION KINETICS ; RESONANCE ; Thermodynamics ; TRANSITION ELEMENTS 550200 -- Biochemistry ; VERY LOW TEMPERATURE</subject><ispartof>Biophys. J.; (United States), 1984-02, Vol.45 (2), p.473-479</ispartof><rights>1984 The Biophysical Society</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4645-3b733cd3296d48717451ec58c91ac0db79d33a04411ae59d9250d06b52503f823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1434857/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(84)84171-5$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8994876$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6320917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6834934$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LoBrutto, R.</creatorcontrib><creatorcontrib>Wei, Y.H.</creatorcontrib><creatorcontrib>Yoshida, S.</creatorcontrib><creatorcontrib>Van Camp, H.L.</creatorcontrib><creatorcontrib>Scholes, C.P.</creatorcontrib><creatorcontrib>King, T.E.</creatorcontrib><creatorcontrib>State Univ. of New York, Albany</creatorcontrib><title>Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin</title><title>Biophys. J.; (United States)</title><addtitle>Biophys J</addtitle><description>By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15–25 K range.</description><subject>ACTIVATION ENERGY</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOCHEMICAL REACTION KINETICS</subject><subject>Biological and medical sciences</subject><subject>CARBON COMPOUNDS</subject><subject>CARBON MONOXIDE</subject><subject>CARBON OXIDES</subject><subject>CARBOXYLIC ACIDS</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>COPPER</subject><subject>CRYOGENICS</subject><subject>cytochrome c oxidase</subject><subject>CYTOCHROME OXIDASE</subject><subject>DECOMPOSITION</subject><subject>E.S.R</subject><subject>ELECTRON SPIN RESONANCE</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>ELEMENTS</subject><subject>ENERGY</subject><subject>ENZYMES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GLOBIN</subject><subject>HAEM DEHYDROGENASES</subject><subject>HEME</subject><subject>Heme - metabolism</subject><subject>HETEROCYCLIC ACIDS</subject><subject>HETEROCYCLIC COMPOUNDS</subject><subject>In Vitro Techniques</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>KINETICS</subject><subject>MAGNETIC RESONANCE</subject><subject>METALS</subject><subject>Molecular biophysics</subject><subject>MYOGLOBIN</subject><subject>Myoglobin - metabolism</subject><subject>NITRIC OXIDE</subject><subject>Nitric Oxide - metabolism</subject><subject>NITROGEN COMPOUNDS</subject><subject>NITROGEN OXIDES</subject><subject>NONMETALS</subject><subject>ORGANIC ACIDS</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>OXIDES</subject><subject>OXIDOREDUCTASES</subject><subject>OXYGEN</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHOTOCHEMICAL REACTIONS</subject><subject>PHOTOLYSIS</subject><subject>PIGMENTS</subject><subject>PORPHYRINS</subject><subject>PROTEINS</subject><subject>REACTION KINETICS</subject><subject>RESONANCE</subject><subject>Thermodynamics</subject><subject>TRANSITION ELEMENTS 550200 -- Biochemistry</subject><subject>VERY LOW TEMPERATURE</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkttu1DAQhiMEKtvCI1SKEELtRcCO7cS-AaFqOUiVQByuLcee7BoSe2t7V90n4LVxNqsVXPVqJM834_ln_qK4xOg1Rrh58x0h1FSECnbF6TWnuMUVe1QsMKN1hRBvHheLE_K0OI_xF0K4ZgifFWcNqZHA7aL4sxxAp-BduVFBjWrlIFldBojeKaehKq-WX79V14eXYQem_G0PSCx9X-qw9ytwucDZFHLw99ZAZrUfO-tUsrlx8qXeJ6_XwY9QzoyKUCpnyjHXDz6jz4onvRoiPD_Gi-Lnh-WPm0_V7ZePn2_e31aaNpRVpGsJ0YbUojGUt7ilDINmXAusNDJdKwwhClGKsQImjMh6DWo6liPpeU0uirdz3822G8FocCmoQW6CHVXYS6-s_D_j7Fqu_E5iSihnbW7wYm7gY7IyaptAr7V3Lq9RNjwvm9AMvTr-EvzdFmKSo40ahkE58NsoORKMINw-CGLCBa6bJoNsBnXwMQboTyNjJCc_yIMf5HRsyak8-EGyXHf5r95T1dEAOf_ymFdRq6EP-eg2njAuRF7z9P27GYN8m52FMCmH7A9jwyTcePvAIH8BOrTTNw</recordid><startdate>19840201</startdate><enddate>19840201</enddate><creator>LoBrutto, R.</creator><creator>Wei, Y.H.</creator><creator>Yoshida, S.</creator><creator>Van Camp, H.L.</creator><creator>Scholes, C.P.</creator><creator>King, T.E.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19840201</creationdate><title>Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin</title><author>LoBrutto, R. ; Wei, Y.H. ; Yoshida, S. ; Van Camp, H.L. ; Scholes, C.P. ; King, T.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4645-3b733cd3296d48717451ec58c91ac0db79d33a04411ae59d9250d06b52503f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>ACTIVATION ENERGY</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOCHEMICAL REACTION KINETICS</topic><topic>Biological and medical sciences</topic><topic>CARBON COMPOUNDS</topic><topic>CARBON MONOXIDE</topic><topic>CARBON OXIDES</topic><topic>CARBOXYLIC ACIDS</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>COPPER</topic><topic>CRYOGENICS</topic><topic>cytochrome c oxidase</topic><topic>CYTOCHROME OXIDASE</topic><topic>DECOMPOSITION</topic><topic>E.S.R</topic><topic>ELECTRON SPIN RESONANCE</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>ELEMENTS</topic><topic>ENERGY</topic><topic>ENZYMES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GLOBIN</topic><topic>HAEM DEHYDROGENASES</topic><topic>HEME</topic><topic>Heme - metabolism</topic><topic>HETEROCYCLIC ACIDS</topic><topic>HETEROCYCLIC COMPOUNDS</topic><topic>In Vitro Techniques</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>KINETICS</topic><topic>MAGNETIC RESONANCE</topic><topic>METALS</topic><topic>Molecular biophysics</topic><topic>MYOGLOBIN</topic><topic>Myoglobin - metabolism</topic><topic>NITRIC OXIDE</topic><topic>Nitric Oxide - metabolism</topic><topic>NITROGEN COMPOUNDS</topic><topic>NITROGEN OXIDES</topic><topic>NONMETALS</topic><topic>ORGANIC ACIDS</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>OXIDES</topic><topic>OXIDOREDUCTASES</topic><topic>OXYGEN</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHOTOCHEMICAL REACTIONS</topic><topic>PHOTOLYSIS</topic><topic>PIGMENTS</topic><topic>PORPHYRINS</topic><topic>PROTEINS</topic><topic>REACTION KINETICS</topic><topic>RESONANCE</topic><topic>Thermodynamics</topic><topic>TRANSITION ELEMENTS 550200 -- Biochemistry</topic><topic>VERY LOW TEMPERATURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LoBrutto, R.</creatorcontrib><creatorcontrib>Wei, Y.H.</creatorcontrib><creatorcontrib>Yoshida, S.</creatorcontrib><creatorcontrib>Van Camp, H.L.</creatorcontrib><creatorcontrib>Scholes, C.P.</creatorcontrib><creatorcontrib>King, T.E.</creatorcontrib><creatorcontrib>State Univ. of New York, Albany</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophys. J.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LoBrutto, R.</au><au>Wei, Y.H.</au><au>Yoshida, S.</au><au>Van Camp, H.L.</au><au>Scholes, C.P.</au><au>King, T.E.</au><aucorp>State Univ. of New York, Albany</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin</atitle><jtitle>Biophys. J.; (United States)</jtitle><addtitle>Biophys J</addtitle><date>1984-02-01</date><risdate>1984</risdate><volume>45</volume><issue>2</issue><spage>473</spage><epage>479</epage><pages>473-479</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15–25 K range.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>6320917</pmid><doi>10.1016/S0006-3495(84)84171-5</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophys. J.; (United States), 1984-02, Vol.45 (2), p.473-479
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1434857
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects ACTIVATION ENERGY
Animals
BASIC BIOLOGICAL SCIENCES
BIOCHEMICAL REACTION KINETICS
Biological and medical sciences
CARBON COMPOUNDS
CARBON MONOXIDE
CARBON OXIDES
CARBOXYLIC ACIDS
CHALCOGENIDES
CHEMICAL REACTIONS
COPPER
CRYOGENICS
cytochrome c oxidase
CYTOCHROME OXIDASE
DECOMPOSITION
E.S.R
ELECTRON SPIN RESONANCE
Electron Spin Resonance Spectroscopy
Electron Transport Complex IV - metabolism
ELEMENTS
ENERGY
ENZYMES
Fundamental and applied biological sciences. Psychology
GLOBIN
HAEM DEHYDROGENASES
HEME
Heme - metabolism
HETEROCYCLIC ACIDS
HETEROCYCLIC COMPOUNDS
In Vitro Techniques
Interactions. Associations
Intermolecular phenomena
KINETICS
MAGNETIC RESONANCE
METALS
Molecular biophysics
MYOGLOBIN
Myoglobin - metabolism
NITRIC OXIDE
Nitric Oxide - metabolism
NITROGEN COMPOUNDS
NITROGEN OXIDES
NONMETALS
ORGANIC ACIDS
ORGANIC COMPOUNDS
ORGANIC NITROGEN COMPOUNDS
OXIDES
OXIDOREDUCTASES
OXYGEN
OXYGEN COMPOUNDS
PHOTOCHEMICAL REACTIONS
PHOTOLYSIS
PIGMENTS
PORPHYRINS
PROTEINS
REACTION KINETICS
RESONANCE
Thermodynamics
TRANSITION ELEMENTS 550200 -- Biochemistry
VERY LOW TEMPERATURE
title Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20paramagnetic%20resonance-%20(EPR-)%20resolved%20kinetics%20of%20cryogenic%20nitric%20oxide%20recombination%20to%20cytochrome%20c%20oxidase%20and%20myoglobin&rft.jtitle=Biophys.%20J.;%20(United%20States)&rft.au=LoBrutto,%20R.&rft.aucorp=State%20Univ.%20of%20New%20York,%20Albany&rft.date=1984-02-01&rft.volume=45&rft.issue=2&rft.spage=473&rft.epage=479&rft.pages=473-479&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(84)84171-5&rft_dat=%3Cproquest_pubme%3E80953017%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13891266&rft_id=info:pmid/6320917&rft_els_id=S0006349584841715&rfr_iscdi=true