Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains

Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome biology 2006-01, Vol.7 (2), p.R15-1283
Hauptverfasser: Slawson, Elizabeth E, Shaffer, Christopher D, Malone, Colin D, Leung, Wilson, Kellmann, Elmer, Shevchek, Rachel B, Craig, Carolyn A, Bloom, Seth M, Bogenpohl, 2nd, James, Dee, James, Morimoto, Emiko T A, Myoung, Jenny, Nett, Andrew S, Ozsolak, Fatih, Tittiger, Mindy E, Zeug, Andrea, Pardue, Mary-Lou, Buhler, Jeremy, Mardis, Elaine R, Elgin, Sarah C R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue 2
container_start_page R15
container_title Genome biology
container_volume 7
creator Slawson, Elizabeth E
Shaffer, Christopher D
Malone, Colin D
Leung, Wilson
Kellmann, Elmer
Shevchek, Rachel B
Craig, Carolyn A
Bloom, Seth M
Bogenpohl, 2nd, James
Dee, James
Morimoto, Emiko T A
Myoung, Jenny
Nett, Andrew S
Ozsolak, Fatih
Tittiger, Mindy E
Zeug, Andrea
Pardue, Mary-Lou
Buhler, Jeremy
Mardis, Elaine R
Elgin, Sarah C R
description Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago. Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %). Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.
doi_str_mv 10.1186/gb-2006-7-2-r15
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1431729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67723129</sourcerecordid><originalsourceid>FETCH-LOGICAL-p297t-fd936a70714fb7e9b2b9115d4d6ea8ca4aa3d4b83f0230bad83b3d110cc85b1d3</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhq0IlC-o0yFXEc0Gj-21d5tI0QUCUgRNItGt_LV3Rmt7sfdO4pfwd_GFEEJDNaPXr555x4PQGZALgE68W-uGEiIa2dAmQ3uAjoFL3khBvr541h-hk1K-EQI9p-IQHYFoiQTRH6OfqxRmlX1JEacR27Rgs8kppJKCw8V937poXMFj1fD1BQ5uUjGtVVlcxiravbbz2U--4Ox2Tk2lytjF7M0muLjsqdefr_CSVSxz2s_5S_URb1wlpYeZavGmJgjKx_IKvRwry71-rKfo_sP7u9XH5vbLzafV1W0z014uzWh7JpSsy_BRS9drqnuA1nIrnOqM4koxy3XHRkIZ0cp2TDMLQIzpWg2WnaLL39x5q4OzpibOahrm7IPKP4ak_PDvS_SbYZ12A3AGkvYVcP4IyKmuVZYh-GLcVL_JpW0ZhJSUwYPx7X-N9Y4EJO9bWq1vnod6SvPnbOwXIMWfFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000174952</pqid></control><display><type>article</type><title>Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Slawson, Elizabeth E ; Shaffer, Christopher D ; Malone, Colin D ; Leung, Wilson ; Kellmann, Elmer ; Shevchek, Rachel B ; Craig, Carolyn A ; Bloom, Seth M ; Bogenpohl, 2nd, James ; Dee, James ; Morimoto, Emiko T A ; Myoung, Jenny ; Nett, Andrew S ; Ozsolak, Fatih ; Tittiger, Mindy E ; Zeug, Andrea ; Pardue, Mary-Lou ; Buhler, Jeremy ; Mardis, Elaine R ; Elgin, Sarah C R</creator><creatorcontrib>Slawson, Elizabeth E ; Shaffer, Christopher D ; Malone, Colin D ; Leung, Wilson ; Kellmann, Elmer ; Shevchek, Rachel B ; Craig, Carolyn A ; Bloom, Seth M ; Bogenpohl, 2nd, James ; Dee, James ; Morimoto, Emiko T A ; Myoung, Jenny ; Nett, Andrew S ; Ozsolak, Fatih ; Tittiger, Mindy E ; Zeug, Andrea ; Pardue, Mary-Lou ; Buhler, Jeremy ; Mardis, Elaine R ; Elgin, Sarah C R</creatorcontrib><description>Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago. Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %). Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.</description><identifier>ISSN: 1474-760X</identifier><identifier>ISSN: 1465-6906</identifier><identifier>EISSN: 1474-760X</identifier><identifier>EISSN: 1465-6914</identifier><identifier>DOI: 10.1186/gb-2006-7-2-r15</identifier><identifier>PMID: 16507169</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Animals ; antibodies ; Chromosome Mapping ; DNA ; DNA - genetics ; DNA Transposable Elements - genetics ; Drosophila - genetics ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Expressed Sequence Tags ; Genome ; heterochromatin ; Heterochromatin - genetics ; histones ; In Situ Hybridization ; introns ; Models, Genetic ; Models, Statistical ; packaging ; Repetitive Sequences, Nucleic Acid ; Retroelements - genetics ; RNA Interference ; sequence analysis ; staining ; Statistics, Nonparametric ; transposons</subject><ispartof>Genome biology, 2006-01, Vol.7 (2), p.R15-1283</ispartof><rights>Copyright © 2006 Slawson et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431729/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431729/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16507169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slawson, Elizabeth E</creatorcontrib><creatorcontrib>Shaffer, Christopher D</creatorcontrib><creatorcontrib>Malone, Colin D</creatorcontrib><creatorcontrib>Leung, Wilson</creatorcontrib><creatorcontrib>Kellmann, Elmer</creatorcontrib><creatorcontrib>Shevchek, Rachel B</creatorcontrib><creatorcontrib>Craig, Carolyn A</creatorcontrib><creatorcontrib>Bloom, Seth M</creatorcontrib><creatorcontrib>Bogenpohl, 2nd, James</creatorcontrib><creatorcontrib>Dee, James</creatorcontrib><creatorcontrib>Morimoto, Emiko T A</creatorcontrib><creatorcontrib>Myoung, Jenny</creatorcontrib><creatorcontrib>Nett, Andrew S</creatorcontrib><creatorcontrib>Ozsolak, Fatih</creatorcontrib><creatorcontrib>Tittiger, Mindy E</creatorcontrib><creatorcontrib>Zeug, Andrea</creatorcontrib><creatorcontrib>Pardue, Mary-Lou</creatorcontrib><creatorcontrib>Buhler, Jeremy</creatorcontrib><creatorcontrib>Mardis, Elaine R</creatorcontrib><creatorcontrib>Elgin, Sarah C R</creatorcontrib><title>Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains</title><title>Genome biology</title><addtitle>Genome Biol</addtitle><description>Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago. Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %). Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.</description><subject>Animals</subject><subject>antibodies</subject><subject>Chromosome Mapping</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Expressed Sequence Tags</subject><subject>Genome</subject><subject>heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>histones</subject><subject>In Situ Hybridization</subject><subject>introns</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>packaging</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Retroelements - genetics</subject><subject>RNA Interference</subject><subject>sequence analysis</subject><subject>staining</subject><subject>Statistics, Nonparametric</subject><subject>transposons</subject><issn>1474-760X</issn><issn>1465-6906</issn><issn>1474-760X</issn><issn>1465-6914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT1vFDEQhq0IlC-o0yFXEc0Gj-21d5tI0QUCUgRNItGt_LV3Rmt7sfdO4pfwd_GFEEJDNaPXr555x4PQGZALgE68W-uGEiIa2dAmQ3uAjoFL3khBvr541h-hk1K-EQI9p-IQHYFoiQTRH6OfqxRmlX1JEacR27Rgs8kppJKCw8V937poXMFj1fD1BQ5uUjGtVVlcxiravbbz2U--4Ox2Tk2lytjF7M0muLjsqdefr_CSVSxz2s_5S_URb1wlpYeZavGmJgjKx_IKvRwry71-rKfo_sP7u9XH5vbLzafV1W0z014uzWh7JpSsy_BRS9drqnuA1nIrnOqM4koxy3XHRkIZ0cp2TDMLQIzpWg2WnaLL39x5q4OzpibOahrm7IPKP4ak_PDvS_SbYZ12A3AGkvYVcP4IyKmuVZYh-GLcVL_JpW0ZhJSUwYPx7X-N9Y4EJO9bWq1vnod6SvPnbOwXIMWfFw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Slawson, Elizabeth E</creator><creator>Shaffer, Christopher D</creator><creator>Malone, Colin D</creator><creator>Leung, Wilson</creator><creator>Kellmann, Elmer</creator><creator>Shevchek, Rachel B</creator><creator>Craig, Carolyn A</creator><creator>Bloom, Seth M</creator><creator>Bogenpohl, 2nd, James</creator><creator>Dee, James</creator><creator>Morimoto, Emiko T A</creator><creator>Myoung, Jenny</creator><creator>Nett, Andrew S</creator><creator>Ozsolak, Fatih</creator><creator>Tittiger, Mindy E</creator><creator>Zeug, Andrea</creator><creator>Pardue, Mary-Lou</creator><creator>Buhler, Jeremy</creator><creator>Mardis, Elaine R</creator><creator>Elgin, Sarah C R</creator><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060101</creationdate><title>Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains</title><author>Slawson, Elizabeth E ; Shaffer, Christopher D ; Malone, Colin D ; Leung, Wilson ; Kellmann, Elmer ; Shevchek, Rachel B ; Craig, Carolyn A ; Bloom, Seth M ; Bogenpohl, 2nd, James ; Dee, James ; Morimoto, Emiko T A ; Myoung, Jenny ; Nett, Andrew S ; Ozsolak, Fatih ; Tittiger, Mindy E ; Zeug, Andrea ; Pardue, Mary-Lou ; Buhler, Jeremy ; Mardis, Elaine R ; Elgin, Sarah C R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p297t-fd936a70714fb7e9b2b9115d4d6ea8ca4aa3d4b83f0230bad83b3d110cc85b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>antibodies</topic><topic>Chromosome Mapping</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Expressed Sequence Tags</topic><topic>Genome</topic><topic>heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>histones</topic><topic>In Situ Hybridization</topic><topic>introns</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>packaging</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Retroelements - genetics</topic><topic>RNA Interference</topic><topic>sequence analysis</topic><topic>staining</topic><topic>Statistics, Nonparametric</topic><topic>transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slawson, Elizabeth E</creatorcontrib><creatorcontrib>Shaffer, Christopher D</creatorcontrib><creatorcontrib>Malone, Colin D</creatorcontrib><creatorcontrib>Leung, Wilson</creatorcontrib><creatorcontrib>Kellmann, Elmer</creatorcontrib><creatorcontrib>Shevchek, Rachel B</creatorcontrib><creatorcontrib>Craig, Carolyn A</creatorcontrib><creatorcontrib>Bloom, Seth M</creatorcontrib><creatorcontrib>Bogenpohl, 2nd, James</creatorcontrib><creatorcontrib>Dee, James</creatorcontrib><creatorcontrib>Morimoto, Emiko T A</creatorcontrib><creatorcontrib>Myoung, Jenny</creatorcontrib><creatorcontrib>Nett, Andrew S</creatorcontrib><creatorcontrib>Ozsolak, Fatih</creatorcontrib><creatorcontrib>Tittiger, Mindy E</creatorcontrib><creatorcontrib>Zeug, Andrea</creatorcontrib><creatorcontrib>Pardue, Mary-Lou</creatorcontrib><creatorcontrib>Buhler, Jeremy</creatorcontrib><creatorcontrib>Mardis, Elaine R</creatorcontrib><creatorcontrib>Elgin, Sarah C R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slawson, Elizabeth E</au><au>Shaffer, Christopher D</au><au>Malone, Colin D</au><au>Leung, Wilson</au><au>Kellmann, Elmer</au><au>Shevchek, Rachel B</au><au>Craig, Carolyn A</au><au>Bloom, Seth M</au><au>Bogenpohl, 2nd, James</au><au>Dee, James</au><au>Morimoto, Emiko T A</au><au>Myoung, Jenny</au><au>Nett, Andrew S</au><au>Ozsolak, Fatih</au><au>Tittiger, Mindy E</au><au>Zeug, Andrea</au><au>Pardue, Mary-Lou</au><au>Buhler, Jeremy</au><au>Mardis, Elaine R</au><au>Elgin, Sarah C R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains</atitle><jtitle>Genome biology</jtitle><addtitle>Genome Biol</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>7</volume><issue>2</issue><spage>R15</spage><epage>1283</epage><pages>R15-1283</pages><issn>1474-760X</issn><issn>1465-6906</issn><eissn>1474-760X</eissn><eissn>1465-6914</eissn><abstract>Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago. Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %). Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>16507169</pmid><doi>10.1186/gb-2006-7-2-r15</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-760X
ispartof Genome biology, 2006-01, Vol.7 (2), p.R15-1283
issn 1474-760X
1465-6906
1474-760X
1465-6914
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1431729
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals
subjects Animals
antibodies
Chromosome Mapping
DNA
DNA - genetics
DNA Transposable Elements - genetics
Drosophila - genetics
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Expressed Sequence Tags
Genome
heterochromatin
Heterochromatin - genetics
histones
In Situ Hybridization
introns
Models, Genetic
Models, Statistical
packaging
Repetitive Sequences, Nucleic Acid
Retroelements - genetics
RNA Interference
sequence analysis
staining
Statistics, Nonparametric
transposons
title Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20dot%20chromosome%20sequences%20from%20D.%20melanogaster%20and%20D.%20virilis%20reveals%20an%20enrichment%20of%20DNA%20transposon%20sequences%20in%20heterochromatic%20domains&rft.jtitle=Genome%20biology&rft.au=Slawson,%20Elizabeth%20E&rft.date=2006-01-01&rft.volume=7&rft.issue=2&rft.spage=R15&rft.epage=1283&rft.pages=R15-1283&rft.issn=1474-760X&rft.eissn=1474-760X&rft_id=info:doi/10.1186/gb-2006-7-2-r15&rft_dat=%3Cproquest_pubme%3E67723129%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000174952&rft_id=info:pmid/16507169&rfr_iscdi=true