Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains
Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests...
Gespeichert in:
Veröffentlicht in: | Genome biology 2006-01, Vol.7 (2), p.R15-1283 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | 2 |
container_start_page | R15 |
container_title | Genome biology |
container_volume | 7 |
creator | Slawson, Elizabeth E Shaffer, Christopher D Malone, Colin D Leung, Wilson Kellmann, Elmer Shevchek, Rachel B Craig, Carolyn A Bloom, Seth M Bogenpohl, 2nd, James Dee, James Morimoto, Emiko T A Myoung, Jenny Nett, Andrew S Ozsolak, Fatih Tittiger, Mindy E Zeug, Andrea Pardue, Mary-Lou Buhler, Jeremy Mardis, Elaine R Elgin, Sarah C R |
description | Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.
Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).
Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging. |
doi_str_mv | 10.1186/gb-2006-7-2-r15 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1431729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67723129</sourcerecordid><originalsourceid>FETCH-LOGICAL-p297t-fd936a70714fb7e9b2b9115d4d6ea8ca4aa3d4b83f0230bad83b3d110cc85b1d3</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhq0IlC-o0yFXEc0Gj-21d5tI0QUCUgRNItGt_LV3Rmt7sfdO4pfwd_GFEEJDNaPXr555x4PQGZALgE68W-uGEiIa2dAmQ3uAjoFL3khBvr541h-hk1K-EQI9p-IQHYFoiQTRH6OfqxRmlX1JEacR27Rgs8kppJKCw8V937poXMFj1fD1BQ5uUjGtVVlcxiravbbz2U--4Ox2Tk2lytjF7M0muLjsqdefr_CSVSxz2s_5S_URb1wlpYeZavGmJgjKx_IKvRwry71-rKfo_sP7u9XH5vbLzafV1W0z014uzWh7JpSsy_BRS9drqnuA1nIrnOqM4koxy3XHRkIZ0cp2TDMLQIzpWg2WnaLL39x5q4OzpibOahrm7IPKP4ak_PDvS_SbYZ12A3AGkvYVcP4IyKmuVZYh-GLcVL_JpW0ZhJSUwYPx7X-N9Y4EJO9bWq1vnod6SvPnbOwXIMWfFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000174952</pqid></control><display><type>article</type><title>Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Slawson, Elizabeth E ; Shaffer, Christopher D ; Malone, Colin D ; Leung, Wilson ; Kellmann, Elmer ; Shevchek, Rachel B ; Craig, Carolyn A ; Bloom, Seth M ; Bogenpohl, 2nd, James ; Dee, James ; Morimoto, Emiko T A ; Myoung, Jenny ; Nett, Andrew S ; Ozsolak, Fatih ; Tittiger, Mindy E ; Zeug, Andrea ; Pardue, Mary-Lou ; Buhler, Jeremy ; Mardis, Elaine R ; Elgin, Sarah C R</creator><creatorcontrib>Slawson, Elizabeth E ; Shaffer, Christopher D ; Malone, Colin D ; Leung, Wilson ; Kellmann, Elmer ; Shevchek, Rachel B ; Craig, Carolyn A ; Bloom, Seth M ; Bogenpohl, 2nd, James ; Dee, James ; Morimoto, Emiko T A ; Myoung, Jenny ; Nett, Andrew S ; Ozsolak, Fatih ; Tittiger, Mindy E ; Zeug, Andrea ; Pardue, Mary-Lou ; Buhler, Jeremy ; Mardis, Elaine R ; Elgin, Sarah C R</creatorcontrib><description>Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.
Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).
Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.</description><identifier>ISSN: 1474-760X</identifier><identifier>ISSN: 1465-6906</identifier><identifier>EISSN: 1474-760X</identifier><identifier>EISSN: 1465-6914</identifier><identifier>DOI: 10.1186/gb-2006-7-2-r15</identifier><identifier>PMID: 16507169</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Animals ; antibodies ; Chromosome Mapping ; DNA ; DNA - genetics ; DNA Transposable Elements - genetics ; Drosophila - genetics ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Expressed Sequence Tags ; Genome ; heterochromatin ; Heterochromatin - genetics ; histones ; In Situ Hybridization ; introns ; Models, Genetic ; Models, Statistical ; packaging ; Repetitive Sequences, Nucleic Acid ; Retroelements - genetics ; RNA Interference ; sequence analysis ; staining ; Statistics, Nonparametric ; transposons</subject><ispartof>Genome biology, 2006-01, Vol.7 (2), p.R15-1283</ispartof><rights>Copyright © 2006 Slawson et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431729/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431729/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16507169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slawson, Elizabeth E</creatorcontrib><creatorcontrib>Shaffer, Christopher D</creatorcontrib><creatorcontrib>Malone, Colin D</creatorcontrib><creatorcontrib>Leung, Wilson</creatorcontrib><creatorcontrib>Kellmann, Elmer</creatorcontrib><creatorcontrib>Shevchek, Rachel B</creatorcontrib><creatorcontrib>Craig, Carolyn A</creatorcontrib><creatorcontrib>Bloom, Seth M</creatorcontrib><creatorcontrib>Bogenpohl, 2nd, James</creatorcontrib><creatorcontrib>Dee, James</creatorcontrib><creatorcontrib>Morimoto, Emiko T A</creatorcontrib><creatorcontrib>Myoung, Jenny</creatorcontrib><creatorcontrib>Nett, Andrew S</creatorcontrib><creatorcontrib>Ozsolak, Fatih</creatorcontrib><creatorcontrib>Tittiger, Mindy E</creatorcontrib><creatorcontrib>Zeug, Andrea</creatorcontrib><creatorcontrib>Pardue, Mary-Lou</creatorcontrib><creatorcontrib>Buhler, Jeremy</creatorcontrib><creatorcontrib>Mardis, Elaine R</creatorcontrib><creatorcontrib>Elgin, Sarah C R</creatorcontrib><title>Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains</title><title>Genome biology</title><addtitle>Genome Biol</addtitle><description>Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.
Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).
Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.</description><subject>Animals</subject><subject>antibodies</subject><subject>Chromosome Mapping</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Expressed Sequence Tags</subject><subject>Genome</subject><subject>heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>histones</subject><subject>In Situ Hybridization</subject><subject>introns</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>packaging</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Retroelements - genetics</subject><subject>RNA Interference</subject><subject>sequence analysis</subject><subject>staining</subject><subject>Statistics, Nonparametric</subject><subject>transposons</subject><issn>1474-760X</issn><issn>1465-6906</issn><issn>1474-760X</issn><issn>1465-6914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT1vFDEQhq0IlC-o0yFXEc0Gj-21d5tI0QUCUgRNItGt_LV3Rmt7sfdO4pfwd_GFEEJDNaPXr555x4PQGZALgE68W-uGEiIa2dAmQ3uAjoFL3khBvr541h-hk1K-EQI9p-IQHYFoiQTRH6OfqxRmlX1JEacR27Rgs8kppJKCw8V937poXMFj1fD1BQ5uUjGtVVlcxiravbbz2U--4Ox2Tk2lytjF7M0muLjsqdefr_CSVSxz2s_5S_URb1wlpYeZavGmJgjKx_IKvRwry71-rKfo_sP7u9XH5vbLzafV1W0z014uzWh7JpSsy_BRS9drqnuA1nIrnOqM4koxy3XHRkIZ0cp2TDMLQIzpWg2WnaLL39x5q4OzpibOahrm7IPKP4ak_PDvS_SbYZ12A3AGkvYVcP4IyKmuVZYh-GLcVL_JpW0ZhJSUwYPx7X-N9Y4EJO9bWq1vnod6SvPnbOwXIMWfFw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Slawson, Elizabeth E</creator><creator>Shaffer, Christopher D</creator><creator>Malone, Colin D</creator><creator>Leung, Wilson</creator><creator>Kellmann, Elmer</creator><creator>Shevchek, Rachel B</creator><creator>Craig, Carolyn A</creator><creator>Bloom, Seth M</creator><creator>Bogenpohl, 2nd, James</creator><creator>Dee, James</creator><creator>Morimoto, Emiko T A</creator><creator>Myoung, Jenny</creator><creator>Nett, Andrew S</creator><creator>Ozsolak, Fatih</creator><creator>Tittiger, Mindy E</creator><creator>Zeug, Andrea</creator><creator>Pardue, Mary-Lou</creator><creator>Buhler, Jeremy</creator><creator>Mardis, Elaine R</creator><creator>Elgin, Sarah C R</creator><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060101</creationdate><title>Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains</title><author>Slawson, Elizabeth E ; Shaffer, Christopher D ; Malone, Colin D ; Leung, Wilson ; Kellmann, Elmer ; Shevchek, Rachel B ; Craig, Carolyn A ; Bloom, Seth M ; Bogenpohl, 2nd, James ; Dee, James ; Morimoto, Emiko T A ; Myoung, Jenny ; Nett, Andrew S ; Ozsolak, Fatih ; Tittiger, Mindy E ; Zeug, Andrea ; Pardue, Mary-Lou ; Buhler, Jeremy ; Mardis, Elaine R ; Elgin, Sarah C R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p297t-fd936a70714fb7e9b2b9115d4d6ea8ca4aa3d4b83f0230bad83b3d110cc85b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>antibodies</topic><topic>Chromosome Mapping</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Expressed Sequence Tags</topic><topic>Genome</topic><topic>heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>histones</topic><topic>In Situ Hybridization</topic><topic>introns</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>packaging</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Retroelements - genetics</topic><topic>RNA Interference</topic><topic>sequence analysis</topic><topic>staining</topic><topic>Statistics, Nonparametric</topic><topic>transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slawson, Elizabeth E</creatorcontrib><creatorcontrib>Shaffer, Christopher D</creatorcontrib><creatorcontrib>Malone, Colin D</creatorcontrib><creatorcontrib>Leung, Wilson</creatorcontrib><creatorcontrib>Kellmann, Elmer</creatorcontrib><creatorcontrib>Shevchek, Rachel B</creatorcontrib><creatorcontrib>Craig, Carolyn A</creatorcontrib><creatorcontrib>Bloom, Seth M</creatorcontrib><creatorcontrib>Bogenpohl, 2nd, James</creatorcontrib><creatorcontrib>Dee, James</creatorcontrib><creatorcontrib>Morimoto, Emiko T A</creatorcontrib><creatorcontrib>Myoung, Jenny</creatorcontrib><creatorcontrib>Nett, Andrew S</creatorcontrib><creatorcontrib>Ozsolak, Fatih</creatorcontrib><creatorcontrib>Tittiger, Mindy E</creatorcontrib><creatorcontrib>Zeug, Andrea</creatorcontrib><creatorcontrib>Pardue, Mary-Lou</creatorcontrib><creatorcontrib>Buhler, Jeremy</creatorcontrib><creatorcontrib>Mardis, Elaine R</creatorcontrib><creatorcontrib>Elgin, Sarah C R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slawson, Elizabeth E</au><au>Shaffer, Christopher D</au><au>Malone, Colin D</au><au>Leung, Wilson</au><au>Kellmann, Elmer</au><au>Shevchek, Rachel B</au><au>Craig, Carolyn A</au><au>Bloom, Seth M</au><au>Bogenpohl, 2nd, James</au><au>Dee, James</au><au>Morimoto, Emiko T A</au><au>Myoung, Jenny</au><au>Nett, Andrew S</au><au>Ozsolak, Fatih</au><au>Tittiger, Mindy E</au><au>Zeug, Andrea</au><au>Pardue, Mary-Lou</au><au>Buhler, Jeremy</au><au>Mardis, Elaine R</au><au>Elgin, Sarah C R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains</atitle><jtitle>Genome biology</jtitle><addtitle>Genome Biol</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>7</volume><issue>2</issue><spage>R15</spage><epage>1283</epage><pages>R15-1283</pages><issn>1474-760X</issn><issn>1465-6906</issn><eissn>1474-760X</eissn><eissn>1465-6914</eissn><abstract>Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.
Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).
Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>16507169</pmid><doi>10.1186/gb-2006-7-2-r15</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-760X |
ispartof | Genome biology, 2006-01, Vol.7 (2), p.R15-1283 |
issn | 1474-760X 1465-6906 1474-760X 1465-6914 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1431729 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals |
subjects | Animals antibodies Chromosome Mapping DNA DNA - genetics DNA Transposable Elements - genetics Drosophila - genetics Drosophila melanogaster Drosophila melanogaster - genetics Drosophila Proteins - genetics Expressed Sequence Tags Genome heterochromatin Heterochromatin - genetics histones In Situ Hybridization introns Models, Genetic Models, Statistical packaging Repetitive Sequences, Nucleic Acid Retroelements - genetics RNA Interference sequence analysis staining Statistics, Nonparametric transposons |
title | Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20dot%20chromosome%20sequences%20from%20D.%20melanogaster%20and%20D.%20virilis%20reveals%20an%20enrichment%20of%20DNA%20transposon%20sequences%20in%20heterochromatic%20domains&rft.jtitle=Genome%20biology&rft.au=Slawson,%20Elizabeth%20E&rft.date=2006-01-01&rft.volume=7&rft.issue=2&rft.spage=R15&rft.epage=1283&rft.pages=R15-1283&rft.issn=1474-760X&rft.eissn=1474-760X&rft_id=info:doi/10.1186/gb-2006-7-2-r15&rft_dat=%3Cproquest_pubme%3E67723129%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000174952&rft_id=info:pmid/16507169&rfr_iscdi=true |