Decoding the fine-scale structure of a breast cancer genome and transcriptome

A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Research 2006-03, Vol.16 (3), p.394-404
Hauptverfasser: Volik, Stanislav, Raphael, Benjamin J, Huang, Guiqing, Stratton, Michael R, Bignel, Graham, Murnane, John, Brebner, John H, Bajsarowicz, Krystyna, Paris, Pamela L, Tao, Quanzhou, Kowbel, David, Lapuk, Anna, Shagin, Dmitri A, Shagina, Irina A, Gray, Joe W, Cheng, Jan-Fang, de Jong, Pieter J, Pevzner, Pavel, Collins, Colin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue 3
container_start_page 394
container_title Genome Research
container_volume 16
creator Volik, Stanislav
Raphael, Benjamin J
Huang, Guiqing
Stratton, Michael R
Bignel, Graham
Murnane, John
Brebner, John H
Bajsarowicz, Krystyna
Paris, Pamela L
Tao, Quanzhou
Kowbel, David
Lapuk, Anna
Shagin, Dmitri A
Shagina, Irina A
Gray, Joe W
Cheng, Jan-Fang
de Jong, Pieter J
Pevzner, Pavel
Collins, Colin
description A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tumorigenesis. End Sequence Profiling (ESP) maps and clones genome breakpoints associated with all types of genome rearrangements elucidating the structural organization of tumor genomes. Here we extend the ESP methodology in several directions using the breast cancer cell line MCF-7. First, targeted ESP is applied to multiple amplified loci, revealing a complex process of rearrangement and co-amplification in these regions reminiscent of breakage/fusion/bridge cycles. Second, genome breakpoints identified by ESP are confirmed using a combination of DNA sequencing and PCR. Third, in vitro functional studies assign biological function to a rearranged tumor BAC clone, demonstrating that it encodes anti-apoptotic activity. Finally, ESP is extended to the transcriptome identifying four novel fusion transcripts and providing evidence that expression of fusion genes may be common in tumors. These results demonstrate the distinct advantages of ESP including: (1) the ability to detect all types of rearrangements and copy number changes; (2) straightforward integration of ESP data with the annotated genome sequence; (3) immortalization of the genome; (4) ability to generate tumor-specific reagents for in vitro and in vivo functional studies. Given these properties, ESP could play an important role in a tumor genome project.
doi_str_mv 10.1101/gr.4247306
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1415204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17088205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-70195637d0a549840163d053cbdcedc8942e7fb50527fc54ea88c646c98110843</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7rp68QdITh6ErkmbNOlFkPUTVrzoOaTptFvppmuSCv57s2zx4-QpQ-adl2fmReiUkjmlhF42bs5SJjKS76Ep5axIOMuL_VgTKZOCcDpBR96_EUIyJuUhmtCc5TTP-BQ93YDpq9Y2OKwA162FxBvdAfbBDSYMDnBfY41LB9oHbLQ14HADtl8D1rbCwWnrjWs3If4co4Nadx5OxneGXu9uXxYPyfL5_nFxvUwMIyIkgtCC55moiI60kpHIUhGembIyUBlZsBREXXLCU1EbzkBLaSKyKWRcWLJshq52vpuhXMcJsBGjUxvXrrX7VL1u1d-ObVeq6T8UZZSnZGtwPhq4_n0AH9S69Qa6TlvoB69yIWiapfm_QirijdPIPkMXO6FxvfcO6m8aStQ2JtU4NcYUxWe_-X-kYy7ZF5gyjX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17088205</pqid></control><display><type>article</type><title>Decoding the fine-scale structure of a breast cancer genome and transcriptome</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Volik, Stanislav ; Raphael, Benjamin J ; Huang, Guiqing ; Stratton, Michael R ; Bignel, Graham ; Murnane, John ; Brebner, John H ; Bajsarowicz, Krystyna ; Paris, Pamela L ; Tao, Quanzhou ; Kowbel, David ; Lapuk, Anna ; Shagin, Dmitri A ; Shagina, Irina A ; Gray, Joe W ; Cheng, Jan-Fang ; de Jong, Pieter J ; Pevzner, Pavel ; Collins, Colin</creator><creatorcontrib>Volik, Stanislav ; Raphael, Benjamin J ; Huang, Guiqing ; Stratton, Michael R ; Bignel, Graham ; Murnane, John ; Brebner, John H ; Bajsarowicz, Krystyna ; Paris, Pamela L ; Tao, Quanzhou ; Kowbel, David ; Lapuk, Anna ; Shagin, Dmitri A ; Shagina, Irina A ; Gray, Joe W ; Cheng, Jan-Fang ; de Jong, Pieter J ; Pevzner, Pavel ; Collins, Colin</creatorcontrib><description>A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tumorigenesis. End Sequence Profiling (ESP) maps and clones genome breakpoints associated with all types of genome rearrangements elucidating the structural organization of tumor genomes. Here we extend the ESP methodology in several directions using the breast cancer cell line MCF-7. First, targeted ESP is applied to multiple amplified loci, revealing a complex process of rearrangement and co-amplification in these regions reminiscent of breakage/fusion/bridge cycles. Second, genome breakpoints identified by ESP are confirmed using a combination of DNA sequencing and PCR. Third, in vitro functional studies assign biological function to a rearranged tumor BAC clone, demonstrating that it encodes anti-apoptotic activity. Finally, ESP is extended to the transcriptome identifying four novel fusion transcripts and providing evidence that expression of fusion genes may be common in tumors. These results demonstrate the distinct advantages of ESP including: (1) the ability to detect all types of rearrangements and copy number changes; (2) straightforward integration of ESP data with the annotated genome sequence; (3) immortalization of the genome; (4) ability to generate tumor-specific reagents for in vitro and in vivo functional studies. Given these properties, ESP could play an important role in a tumor genome project.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gr.4247306</identifier><identifier>PMID: 16461635</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Breast Neoplasms - genetics ; Cell Line, Tumor ; Chromosomes, Artificial, Bacterial - metabolism ; Chromosomes, Human ; Female ; Gene Expression Profiling - methods ; Genome, Human ; Humans ; In Situ Hybridization, Fluorescence ; Methods ; Molecular Sequence Data ; Polymerase Chain Reaction ; Reproducibility of Results ; Sequence Analysis, DNA - methods ; Transcription, Genetic</subject><ispartof>Genome Research, 2006-03, Vol.16 (3), p.394-404</ispartof><rights>Copyright © 2006, Cold Spring Harbor Laboratory Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-70195637d0a549840163d053cbdcedc8942e7fb50527fc54ea88c646c98110843</citedby><cites>FETCH-LOGICAL-c407t-70195637d0a549840163d053cbdcedc8942e7fb50527fc54ea88c646c98110843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1415204/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1415204/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16461635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volik, Stanislav</creatorcontrib><creatorcontrib>Raphael, Benjamin J</creatorcontrib><creatorcontrib>Huang, Guiqing</creatorcontrib><creatorcontrib>Stratton, Michael R</creatorcontrib><creatorcontrib>Bignel, Graham</creatorcontrib><creatorcontrib>Murnane, John</creatorcontrib><creatorcontrib>Brebner, John H</creatorcontrib><creatorcontrib>Bajsarowicz, Krystyna</creatorcontrib><creatorcontrib>Paris, Pamela L</creatorcontrib><creatorcontrib>Tao, Quanzhou</creatorcontrib><creatorcontrib>Kowbel, David</creatorcontrib><creatorcontrib>Lapuk, Anna</creatorcontrib><creatorcontrib>Shagin, Dmitri A</creatorcontrib><creatorcontrib>Shagina, Irina A</creatorcontrib><creatorcontrib>Gray, Joe W</creatorcontrib><creatorcontrib>Cheng, Jan-Fang</creatorcontrib><creatorcontrib>de Jong, Pieter J</creatorcontrib><creatorcontrib>Pevzner, Pavel</creatorcontrib><creatorcontrib>Collins, Colin</creatorcontrib><title>Decoding the fine-scale structure of a breast cancer genome and transcriptome</title><title>Genome Research</title><addtitle>Genome Res</addtitle><description>A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tumorigenesis. End Sequence Profiling (ESP) maps and clones genome breakpoints associated with all types of genome rearrangements elucidating the structural organization of tumor genomes. Here we extend the ESP methodology in several directions using the breast cancer cell line MCF-7. First, targeted ESP is applied to multiple amplified loci, revealing a complex process of rearrangement and co-amplification in these regions reminiscent of breakage/fusion/bridge cycles. Second, genome breakpoints identified by ESP are confirmed using a combination of DNA sequencing and PCR. Third, in vitro functional studies assign biological function to a rearranged tumor BAC clone, demonstrating that it encodes anti-apoptotic activity. Finally, ESP is extended to the transcriptome identifying four novel fusion transcripts and providing evidence that expression of fusion genes may be common in tumors. These results demonstrate the distinct advantages of ESP including: (1) the ability to detect all types of rearrangements and copy number changes; (2) straightforward integration of ESP data with the annotated genome sequence; (3) immortalization of the genome; (4) ability to generate tumor-specific reagents for in vitro and in vivo functional studies. Given these properties, ESP could play an important role in a tumor genome project.</description><subject>Breast Neoplasms - genetics</subject><subject>Cell Line, Tumor</subject><subject>Chromosomes, Artificial, Bacterial - metabolism</subject><subject>Chromosomes, Human</subject><subject>Female</subject><subject>Gene Expression Profiling - methods</subject><subject>Genome, Human</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Methods</subject><subject>Molecular Sequence Data</subject><subject>Polymerase Chain Reaction</subject><subject>Reproducibility of Results</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Transcription, Genetic</subject><issn>1088-9051</issn><issn>1549-5469</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LxDAQhoMo7rp68QdITh6ErkmbNOlFkPUTVrzoOaTptFvppmuSCv57s2zx4-QpQ-adl2fmReiUkjmlhF42bs5SJjKS76Ep5axIOMuL_VgTKZOCcDpBR96_EUIyJuUhmtCc5TTP-BQ93YDpq9Y2OKwA162FxBvdAfbBDSYMDnBfY41LB9oHbLQ14HADtl8D1rbCwWnrjWs3If4co4Nadx5OxneGXu9uXxYPyfL5_nFxvUwMIyIkgtCC55moiI60kpHIUhGembIyUBlZsBREXXLCU1EbzkBLaSKyKWRcWLJshq52vpuhXMcJsBGjUxvXrrX7VL1u1d-ObVeq6T8UZZSnZGtwPhq4_n0AH9S69Qa6TlvoB69yIWiapfm_QirijdPIPkMXO6FxvfcO6m8aStQ2JtU4NcYUxWe_-X-kYy7ZF5gyjX8</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Volik, Stanislav</creator><creator>Raphael, Benjamin J</creator><creator>Huang, Guiqing</creator><creator>Stratton, Michael R</creator><creator>Bignel, Graham</creator><creator>Murnane, John</creator><creator>Brebner, John H</creator><creator>Bajsarowicz, Krystyna</creator><creator>Paris, Pamela L</creator><creator>Tao, Quanzhou</creator><creator>Kowbel, David</creator><creator>Lapuk, Anna</creator><creator>Shagin, Dmitri A</creator><creator>Shagina, Irina A</creator><creator>Gray, Joe W</creator><creator>Cheng, Jan-Fang</creator><creator>de Jong, Pieter J</creator><creator>Pevzner, Pavel</creator><creator>Collins, Colin</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200603</creationdate><title>Decoding the fine-scale structure of a breast cancer genome and transcriptome</title><author>Volik, Stanislav ; Raphael, Benjamin J ; Huang, Guiqing ; Stratton, Michael R ; Bignel, Graham ; Murnane, John ; Brebner, John H ; Bajsarowicz, Krystyna ; Paris, Pamela L ; Tao, Quanzhou ; Kowbel, David ; Lapuk, Anna ; Shagin, Dmitri A ; Shagina, Irina A ; Gray, Joe W ; Cheng, Jan-Fang ; de Jong, Pieter J ; Pevzner, Pavel ; Collins, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-70195637d0a549840163d053cbdcedc8942e7fb50527fc54ea88c646c98110843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Breast Neoplasms - genetics</topic><topic>Cell Line, Tumor</topic><topic>Chromosomes, Artificial, Bacterial - metabolism</topic><topic>Chromosomes, Human</topic><topic>Female</topic><topic>Gene Expression Profiling - methods</topic><topic>Genome, Human</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Methods</topic><topic>Molecular Sequence Data</topic><topic>Polymerase Chain Reaction</topic><topic>Reproducibility of Results</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volik, Stanislav</creatorcontrib><creatorcontrib>Raphael, Benjamin J</creatorcontrib><creatorcontrib>Huang, Guiqing</creatorcontrib><creatorcontrib>Stratton, Michael R</creatorcontrib><creatorcontrib>Bignel, Graham</creatorcontrib><creatorcontrib>Murnane, John</creatorcontrib><creatorcontrib>Brebner, John H</creatorcontrib><creatorcontrib>Bajsarowicz, Krystyna</creatorcontrib><creatorcontrib>Paris, Pamela L</creatorcontrib><creatorcontrib>Tao, Quanzhou</creatorcontrib><creatorcontrib>Kowbel, David</creatorcontrib><creatorcontrib>Lapuk, Anna</creatorcontrib><creatorcontrib>Shagin, Dmitri A</creatorcontrib><creatorcontrib>Shagina, Irina A</creatorcontrib><creatorcontrib>Gray, Joe W</creatorcontrib><creatorcontrib>Cheng, Jan-Fang</creatorcontrib><creatorcontrib>de Jong, Pieter J</creatorcontrib><creatorcontrib>Pevzner, Pavel</creatorcontrib><creatorcontrib>Collins, Colin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volik, Stanislav</au><au>Raphael, Benjamin J</au><au>Huang, Guiqing</au><au>Stratton, Michael R</au><au>Bignel, Graham</au><au>Murnane, John</au><au>Brebner, John H</au><au>Bajsarowicz, Krystyna</au><au>Paris, Pamela L</au><au>Tao, Quanzhou</au><au>Kowbel, David</au><au>Lapuk, Anna</au><au>Shagin, Dmitri A</au><au>Shagina, Irina A</au><au>Gray, Joe W</au><au>Cheng, Jan-Fang</au><au>de Jong, Pieter J</au><au>Pevzner, Pavel</au><au>Collins, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the fine-scale structure of a breast cancer genome and transcriptome</atitle><jtitle>Genome Research</jtitle><addtitle>Genome Res</addtitle><date>2006-03</date><risdate>2006</risdate><volume>16</volume><issue>3</issue><spage>394</spage><epage>404</epage><pages>394-404</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><eissn>1549-5477</eissn><abstract>A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tumorigenesis. End Sequence Profiling (ESP) maps and clones genome breakpoints associated with all types of genome rearrangements elucidating the structural organization of tumor genomes. Here we extend the ESP methodology in several directions using the breast cancer cell line MCF-7. First, targeted ESP is applied to multiple amplified loci, revealing a complex process of rearrangement and co-amplification in these regions reminiscent of breakage/fusion/bridge cycles. Second, genome breakpoints identified by ESP are confirmed using a combination of DNA sequencing and PCR. Third, in vitro functional studies assign biological function to a rearranged tumor BAC clone, demonstrating that it encodes anti-apoptotic activity. Finally, ESP is extended to the transcriptome identifying four novel fusion transcripts and providing evidence that expression of fusion genes may be common in tumors. These results demonstrate the distinct advantages of ESP including: (1) the ability to detect all types of rearrangements and copy number changes; (2) straightforward integration of ESP data with the annotated genome sequence; (3) immortalization of the genome; (4) ability to generate tumor-specific reagents for in vitro and in vivo functional studies. Given these properties, ESP could play an important role in a tumor genome project.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>16461635</pmid><doi>10.1101/gr.4247306</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome Research, 2006-03, Vol.16 (3), p.394-404
issn 1088-9051
1549-5469
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1415204
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Breast Neoplasms - genetics
Cell Line, Tumor
Chromosomes, Artificial, Bacterial - metabolism
Chromosomes, Human
Female
Gene Expression Profiling - methods
Genome, Human
Humans
In Situ Hybridization, Fluorescence
Methods
Molecular Sequence Data
Polymerase Chain Reaction
Reproducibility of Results
Sequence Analysis, DNA - methods
Transcription, Genetic
title Decoding the fine-scale structure of a breast cancer genome and transcriptome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%20fine-scale%20structure%20of%20a%20breast%20cancer%20genome%20and%20transcriptome&rft.jtitle=Genome%20Research&rft.au=Volik,%20Stanislav&rft.date=2006-03&rft.volume=16&rft.issue=3&rft.spage=394&rft.epage=404&rft.pages=394-404&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.4247306&rft_dat=%3Cproquest_pubme%3E17088205%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17088205&rft_id=info:pmid/16461635&rfr_iscdi=true