A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins

RecG protein differs from other helicases analysed to atomic resolution in that it mediates strand separation via translocation on double‐stranded (ds) rather than single‐stranded (ss) DNA. We describe a highly conserved helical hairpin motif in RecG and show it to be important for helicase activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2003-02, Vol.22 (3), p.724-734
Hauptverfasser: Mahdi, Akeel A., Briggs, Geoffrey S., Sharples, Gary J., Wen, Qin, Lloyd, Robert G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 734
container_issue 3
container_start_page 724
container_title The EMBO journal
container_volume 22
creator Mahdi, Akeel A.
Briggs, Geoffrey S.
Sharples, Gary J.
Wen, Qin
Lloyd, Robert G.
description RecG protein differs from other helicases analysed to atomic resolution in that it mediates strand separation via translocation on double‐stranded (ds) rather than single‐stranded (ss) DNA. We describe a highly conserved helical hairpin motif in RecG and show it to be important for helicase activity. It places two arginines (R609 and R630) in opposing positions within the component helices where they are stabilized by a network of hydrogen bonds involving a glutamate from helicase motif VI. We suggest that disruption of this feature, triggered by ATP hydrolysis, moves an adjacent loop structure in the dsDNA‐binding channel and that a swinging arm motion of this loop drives translocation. Substitutions that reverse the charge at R609 or R630 reduce DNA unwinding and ATPase activities, and increase dsDNA binding, but do not affect branched DNA binding. Sequences forming the helical hairpin and loop structures are highly conserved in Mfd protein, a transcription‐coupled DNA repair factor that also translocates on dsDNA. The possibility of type I restriction enzymes and chromatin‐remodelling factors using similar structures to drive translocation on dsDNA is discussed.
doi_str_mv 10.1093/emboj/cdg043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_140728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>348181471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5504-2588f3474d6f9f6f01bb3a21d5e70ac34738106eb10d34f3f6d6bec95fc233d13</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEotPCji3IYsGKUDt-JFmwGKZloGoLQiB2WI59PWRI7MFOCvPvccloKA-x8uJ85_rce7LsAcHPCK7pMfSNXx9rs8KM3spmhAmcF7jkt7MZLgTJGanqg-wwxjXGmFcluZsdkIJzJspiln2ao94b6JD1AZl4cjlHQ1Audl6rofUOBbgC1YFBzRYpFIcw6mEMqku2obVI-75P1ODRO9BLpJxBF9agTfADtC7ey-5Y1UW4v3uPsg8vT98vXuXnb5avF_PzXHOOWV7wqrKUlcwIW1thMWkaqgpiOJRY6aTQimABDcGGMkutMKIBXXOrC0oNoUfZ82nuZmx6MBpc2qKTm9D2KmylV638XXHtZ7nyV5IwXBZV8j_Z-YP_OkIcZN9GDV2nHPgxSlIJWuOKJ_DxH-Daj8Gl3SSpebp3Ta7TPJ0gHXyMAew-CMHyujT5szQ5lZbwRzfD_4J3LSWAT8C3toPtf4fJ04sXZyWvWc1Z8uWTLyaLW0G4EfbfQR5OvFOpY9h_9Ne8Ng7wfS-r8EWKkpZcfrxcSiLeLpas4vKM_gDlYs4I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195261911</pqid></control><display><type>article</type><title>A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Wiley Open Access</source><source>Free Full-Text Journals in Chemistry</source><source>Wiley Blackwell Journals</source><creator>Mahdi, Akeel A. ; Briggs, Geoffrey S. ; Sharples, Gary J. ; Wen, Qin ; Lloyd, Robert G.</creator><creatorcontrib>Mahdi, Akeel A. ; Briggs, Geoffrey S. ; Sharples, Gary J. ; Wen, Qin ; Lloyd, Robert G.</creatorcontrib><description>RecG protein differs from other helicases analysed to atomic resolution in that it mediates strand separation via translocation on double‐stranded (ds) rather than single‐stranded (ss) DNA. We describe a highly conserved helical hairpin motif in RecG and show it to be important for helicase activity. It places two arginines (R609 and R630) in opposing positions within the component helices where they are stabilized by a network of hydrogen bonds involving a glutamate from helicase motif VI. We suggest that disruption of this feature, triggered by ATP hydrolysis, moves an adjacent loop structure in the dsDNA‐binding channel and that a swinging arm motion of this loop drives translocation. Substitutions that reverse the charge at R609 or R630 reduce DNA unwinding and ATPase activities, and increase dsDNA binding, but do not affect branched DNA binding. Sequences forming the helical hairpin and loop structures are highly conserved in Mfd protein, a transcription‐coupled DNA repair factor that also translocates on dsDNA. The possibility of type I restriction enzymes and chromatin‐remodelling factors using similar structures to drive translocation on dsDNA is discussed.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/cdg043</identifier><identifier>PMID: 12554672</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Arginine - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA Helicases - chemistry ; DNA Helicases - metabolism ; DNA replication ; DNA Replication - physiology ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; EMBO09 ; EMBO13 ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Holliday junctions ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RecB ; recombination ; repair ; RuvABC ; Sequence Alignment ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Translocation</subject><ispartof>The EMBO journal, 2003-02, Vol.22 (3), p.724-734</ispartof><rights>European Molecular Biology Organization 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Feb 03, 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5504-2588f3474d6f9f6f01bb3a21d5e70ac34738106eb10d34f3f6d6bec95fc233d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC140728/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC140728/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12554672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahdi, Akeel A.</creatorcontrib><creatorcontrib>Briggs, Geoffrey S.</creatorcontrib><creatorcontrib>Sharples, Gary J.</creatorcontrib><creatorcontrib>Wen, Qin</creatorcontrib><creatorcontrib>Lloyd, Robert G.</creatorcontrib><title>A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>RecG protein differs from other helicases analysed to atomic resolution in that it mediates strand separation via translocation on double‐stranded (ds) rather than single‐stranded (ss) DNA. We describe a highly conserved helical hairpin motif in RecG and show it to be important for helicase activity. It places two arginines (R609 and R630) in opposing positions within the component helices where they are stabilized by a network of hydrogen bonds involving a glutamate from helicase motif VI. We suggest that disruption of this feature, triggered by ATP hydrolysis, moves an adjacent loop structure in the dsDNA‐binding channel and that a swinging arm motion of this loop drives translocation. Substitutions that reverse the charge at R609 or R630 reduce DNA unwinding and ATPase activities, and increase dsDNA binding, but do not affect branched DNA binding. Sequences forming the helical hairpin and loop structures are highly conserved in Mfd protein, a transcription‐coupled DNA repair factor that also translocates on dsDNA. The possibility of type I restriction enzymes and chromatin‐remodelling factors using similar structures to drive translocation on dsDNA is discussed.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Arginine - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - metabolism</subject><subject>DNA replication</subject><subject>DNA Replication - physiology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>EMBO09</subject><subject>EMBO13</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Holliday junctions</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>RecB</subject><subject>recombination</subject><subject>repair</subject><subject>RuvABC</subject><subject>Sequence Alignment</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Translocation</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1DAUhSMEotPCji3IYsGKUDt-JFmwGKZloGoLQiB2WI59PWRI7MFOCvPvccloKA-x8uJ85_rce7LsAcHPCK7pMfSNXx9rs8KM3spmhAmcF7jkt7MZLgTJGanqg-wwxjXGmFcluZsdkIJzJspiln2ao94b6JD1AZl4cjlHQ1Audl6rofUOBbgC1YFBzRYpFIcw6mEMqku2obVI-75P1ODRO9BLpJxBF9agTfADtC7ey-5Y1UW4v3uPsg8vT98vXuXnb5avF_PzXHOOWV7wqrKUlcwIW1thMWkaqgpiOJRY6aTQimABDcGGMkutMKIBXXOrC0oNoUfZ82nuZmx6MBpc2qKTm9D2KmylV638XXHtZ7nyV5IwXBZV8j_Z-YP_OkIcZN9GDV2nHPgxSlIJWuOKJ_DxH-Daj8Gl3SSpebp3Ta7TPJ0gHXyMAew-CMHyujT5szQ5lZbwRzfD_4J3LSWAT8C3toPtf4fJ04sXZyWvWc1Z8uWTLyaLW0G4EfbfQR5OvFOpY9h_9Ne8Ng7wfS-r8EWKkpZcfrxcSiLeLpas4vKM_gDlYs4I</recordid><startdate>20030203</startdate><enddate>20030203</enddate><creator>Mahdi, Akeel A.</creator><creator>Briggs, Geoffrey S.</creator><creator>Sharples, Gary J.</creator><creator>Wen, Qin</creator><creator>Lloyd, Robert G.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20030203</creationdate><title>A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins</title><author>Mahdi, Akeel A. ; Briggs, Geoffrey S. ; Sharples, Gary J. ; Wen, Qin ; Lloyd, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5504-2588f3474d6f9f6f01bb3a21d5e70ac34738106eb10d34f3f6d6bec95fc233d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Arginine - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - metabolism</topic><topic>DNA replication</topic><topic>DNA Replication - physiology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>EMBO09</topic><topic>EMBO13</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Holliday junctions</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>RecB</topic><topic>recombination</topic><topic>repair</topic><topic>RuvABC</topic><topic>Sequence Alignment</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdi, Akeel A.</creatorcontrib><creatorcontrib>Briggs, Geoffrey S.</creatorcontrib><creatorcontrib>Sharples, Gary J.</creatorcontrib><creatorcontrib>Wen, Qin</creatorcontrib><creatorcontrib>Lloyd, Robert G.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdi, Akeel A.</au><au>Briggs, Geoffrey S.</au><au>Sharples, Gary J.</au><au>Wen, Qin</au><au>Lloyd, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2003-02-03</date><risdate>2003</risdate><volume>22</volume><issue>3</issue><spage>724</spage><epage>734</epage><pages>724-734</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>RecG protein differs from other helicases analysed to atomic resolution in that it mediates strand separation via translocation on double‐stranded (ds) rather than single‐stranded (ss) DNA. We describe a highly conserved helical hairpin motif in RecG and show it to be important for helicase activity. It places two arginines (R609 and R630) in opposing positions within the component helices where they are stabilized by a network of hydrogen bonds involving a glutamate from helicase motif VI. We suggest that disruption of this feature, triggered by ATP hydrolysis, moves an adjacent loop structure in the dsDNA‐binding channel and that a swinging arm motion of this loop drives translocation. Substitutions that reverse the charge at R609 or R630 reduce DNA unwinding and ATPase activities, and increase dsDNA binding, but do not affect branched DNA binding. Sequences forming the helical hairpin and loop structures are highly conserved in Mfd protein, a transcription‐coupled DNA repair factor that also translocates on dsDNA. The possibility of type I restriction enzymes and chromatin‐remodelling factors using similar structures to drive translocation on dsDNA is discussed.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>12554672</pmid><doi>10.1093/emboj/cdg043</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2003-02, Vol.22 (3), p.724-734
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_140728
source PubMed Central Free; MEDLINE; Free E-Journal (出版社公開部分のみ); Wiley Open Access; Free Full-Text Journals in Chemistry; Wiley Blackwell Journals
subjects Adenosine Triphosphate - metabolism
Amino Acid Sequence
Arginine - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA Helicases - chemistry
DNA Helicases - metabolism
DNA replication
DNA Replication - physiology
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
EMBO09
EMBO13
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Holliday junctions
Hydrogen Bonding
Models, Molecular
Molecular Sequence Data
Mutagenesis, Site-Directed
Protein Structure, Secondary
Protein Structure, Tertiary
RecB
recombination
repair
RuvABC
Sequence Alignment
Transcription Factors - chemistry
Transcription Factors - metabolism
Translocation
title A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20dsDNA%20translocation%20revealed%20by%20a%20structural%20motif%20common%20to%20RecG%20and%20Mfd%20proteins&rft.jtitle=The%20EMBO%20journal&rft.au=Mahdi,%20Akeel%20A.&rft.date=2003-02-03&rft.volume=22&rft.issue=3&rft.spage=724&rft.epage=734&rft.pages=724-734&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/cdg043&rft_dat=%3Cproquest_pubme%3E348181471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195261911&rft_id=info:pmid/12554672&rfr_iscdi=true