Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory

Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2006-04, Vol.90 (7), p.2309-2325
Hauptverfasser: Song, Hao, Smolen, Paul, Av-Ron, Evyatar, Baxter, Douglas A., Byrne, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2325
container_issue 7
container_start_page 2309
container_title Biophysical journal
container_volume 90
creator Song, Hao
Smolen, Paul
Av-Ron, Evyatar
Baxter, Douglas A.
Byrne, John H.
description Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.
doi_str_mv 10.1529/biophysj.105.074500
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1403175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950672416X</els_id><sourcerecordid>20266372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-8d236754d3ff97a4fc30b41e1ababe8949a3e2d0f80f5b31f0d7c9f62a67ab233</originalsourceid><addsrcrecordid>eNqFkUuP0zAQxy0EYsvCJ0BCFgduKeN3cgBpWfFYqQsHlrPlOHbrktrFThbl25PS8jzAaaSZ3_zn8UfoMYElEbR53oa030xluyQglqC4ALiDFkRwWgHU8i5aAICsGG_EGXpQyhaAUAHkPjojktOa1mKBzKvgx2zNEFLEJnb4Y4jrsTc5DBO-iKafSig4eWzwdeqdPZTwezd8Tfkz9injYePwVexG-11hBlcprqsbl3f42u1Snh6ie970xT06xXP06c3rm8t31erD26vLi1VlBRFDVXeUSSV4x7xvlOHeMmg5ccS0pnV1wxvDHO3A1-BFy4iHTtnGS2qkMi1l7By9POrux3bnOuvikE2v9znsTJ50MkH_WYlho9fpVhMOjCgxCzw7CeT0ZXRl0LtQrOt7E10ai5ZKca4o_BekQKVkis7g07_AbRrz_NSZIUI2vIbD3uwI2ZxKyc7_XJmAPhitfxg9J4Q-Gj13Pfn92l89J2dn4MURcPPPb4PLutjgonVdyM4OukvhnwO-AZNvvPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215694803</pqid></control><display><type>article</type><title>Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Song, Hao ; Smolen, Paul ; Av-Ron, Evyatar ; Baxter, Douglas A. ; Byrne, John H.</creator><creatorcontrib>Song, Hao ; Smolen, Paul ; Av-Ron, Evyatar ; Baxter, Douglas A. ; Byrne, John H.</creatorcontrib><description>Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.074500</identifier><identifier>PMID: 16428285</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animal memory ; Animals ; Aplysia ; Biochemistry ; Biophysical Theory and Modeling ; Complex systems ; Computer Simulation ; Cyclic AMP - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Gene expression ; Hydrolases - chemistry ; Kinetics ; Learning ; Long-Term Potentiation ; Mathematical models ; Memory ; Models, Biological ; Models, Molecular ; Models, Statistical ; Models, Theoretical ; Mollusca ; Mollusks ; Nervous system ; Neuronal Plasticity ; Neurons - metabolism ; Ordinary differential equations ; Phosphorylation ; Serotonin - metabolism ; Signal Transduction ; Software ; Studies ; Time Factors ; Transcription Factors - metabolism ; Ubiquitin - chemistry</subject><ispartof>Biophysical journal, 2006-04, Vol.90 (7), p.2309-2325</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Apr 1, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-8d236754d3ff97a4fc30b41e1ababe8949a3e2d0f80f5b31f0d7c9f62a67ab233</citedby><cites>FETCH-LOGICAL-c515t-8d236754d3ff97a4fc30b41e1ababe8949a3e2d0f80f5b31f0d7c9f62a67ab233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1403175/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.105.074500$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16428285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Smolen, Paul</creatorcontrib><creatorcontrib>Av-Ron, Evyatar</creatorcontrib><creatorcontrib>Baxter, Douglas A.</creatorcontrib><creatorcontrib>Byrne, John H.</creatorcontrib><title>Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.</description><subject>Algorithms</subject><subject>Animal memory</subject><subject>Animals</subject><subject>Aplysia</subject><subject>Biochemistry</subject><subject>Biophysical Theory and Modeling</subject><subject>Complex systems</subject><subject>Computer Simulation</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Gene expression</subject><subject>Hydrolases - chemistry</subject><subject>Kinetics</subject><subject>Learning</subject><subject>Long-Term Potentiation</subject><subject>Mathematical models</subject><subject>Memory</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Mollusca</subject><subject>Mollusks</subject><subject>Nervous system</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Ordinary differential equations</subject><subject>Phosphorylation</subject><subject>Serotonin - metabolism</subject><subject>Signal Transduction</subject><subject>Software</subject><subject>Studies</subject><subject>Time Factors</subject><subject>Transcription Factors - metabolism</subject><subject>Ubiquitin - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUuP0zAQxy0EYsvCJ0BCFgduKeN3cgBpWfFYqQsHlrPlOHbrktrFThbl25PS8jzAaaSZ3_zn8UfoMYElEbR53oa030xluyQglqC4ALiDFkRwWgHU8i5aAICsGG_EGXpQyhaAUAHkPjojktOa1mKBzKvgx2zNEFLEJnb4Y4jrsTc5DBO-iKafSig4eWzwdeqdPZTwezd8Tfkz9injYePwVexG-11hBlcprqsbl3f42u1Snh6ie970xT06xXP06c3rm8t31erD26vLi1VlBRFDVXeUSSV4x7xvlOHeMmg5ccS0pnV1wxvDHO3A1-BFy4iHTtnGS2qkMi1l7By9POrux3bnOuvikE2v9znsTJ50MkH_WYlho9fpVhMOjCgxCzw7CeT0ZXRl0LtQrOt7E10ai5ZKca4o_BekQKVkis7g07_AbRrz_NSZIUI2vIbD3uwI2ZxKyc7_XJmAPhitfxg9J4Q-Gj13Pfn92l89J2dn4MURcPPPb4PLutjgonVdyM4OukvhnwO-AZNvvPM</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Song, Hao</creator><creator>Smolen, Paul</creator><creator>Av-Ron, Evyatar</creator><creator>Baxter, Douglas A.</creator><creator>Byrne, John H.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060401</creationdate><title>Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory</title><author>Song, Hao ; Smolen, Paul ; Av-Ron, Evyatar ; Baxter, Douglas A. ; Byrne, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-8d236754d3ff97a4fc30b41e1ababe8949a3e2d0f80f5b31f0d7c9f62a67ab233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Animal memory</topic><topic>Animals</topic><topic>Aplysia</topic><topic>Biochemistry</topic><topic>Biophysical Theory and Modeling</topic><topic>Complex systems</topic><topic>Computer Simulation</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Gene expression</topic><topic>Hydrolases - chemistry</topic><topic>Kinetics</topic><topic>Learning</topic><topic>Long-Term Potentiation</topic><topic>Mathematical models</topic><topic>Memory</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Mollusca</topic><topic>Mollusks</topic><topic>Nervous system</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Ordinary differential equations</topic><topic>Phosphorylation</topic><topic>Serotonin - metabolism</topic><topic>Signal Transduction</topic><topic>Software</topic><topic>Studies</topic><topic>Time Factors</topic><topic>Transcription Factors - metabolism</topic><topic>Ubiquitin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Smolen, Paul</creatorcontrib><creatorcontrib>Av-Ron, Evyatar</creatorcontrib><creatorcontrib>Baxter, Douglas A.</creatorcontrib><creatorcontrib>Byrne, John H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Hao</au><au>Smolen, Paul</au><au>Av-Ron, Evyatar</au><au>Baxter, Douglas A.</au><au>Byrne, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>90</volume><issue>7</issue><spage>2309</spage><epage>2325</epage><pages>2309-2325</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16428285</pmid><doi>10.1529/biophysj.105.074500</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2006-04, Vol.90 (7), p.2309-2325
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1403175
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Animal memory
Animals
Aplysia
Biochemistry
Biophysical Theory and Modeling
Complex systems
Computer Simulation
Cyclic AMP - metabolism
Cyclic AMP-Dependent Protein Kinases - metabolism
Extracellular Signal-Regulated MAP Kinases - metabolism
Gene expression
Hydrolases - chemistry
Kinetics
Learning
Long-Term Potentiation
Mathematical models
Memory
Models, Biological
Models, Molecular
Models, Statistical
Models, Theoretical
Mollusca
Mollusks
Nervous system
Neuronal Plasticity
Neurons - metabolism
Ordinary differential equations
Phosphorylation
Serotonin - metabolism
Signal Transduction
Software
Studies
Time Factors
Transcription Factors - metabolism
Ubiquitin - chemistry
title Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20and%20Singularity%20Analysis%20of%20a%20Molecular%20Network%20for%20the%20Induction%20of%20Long-Term%20Memory&rft.jtitle=Biophysical%20journal&rft.au=Song,%20Hao&rft.date=2006-04-01&rft.volume=90&rft.issue=7&rft.spage=2309&rft.epage=2325&rft.pages=2309-2325&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.074500&rft_dat=%3Cproquest_pubme%3E20266372%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215694803&rft_id=info:pmid/16428285&rft_els_id=S000634950672416X&rfr_iscdi=true