Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory
Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a comput...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2006-04, Vol.90 (7), p.2309-2325 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2325 |
---|---|
container_issue | 7 |
container_start_page | 2309 |
container_title | Biophysical journal |
container_volume | 90 |
creator | Song, Hao Smolen, Paul Av-Ron, Evyatar Baxter, Douglas A. Byrne, John H. |
description | Withdrawal reflexes of the mollusk
Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with
Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis. |
doi_str_mv | 10.1529/biophysj.105.074500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1403175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950672416X</els_id><sourcerecordid>20266372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-8d236754d3ff97a4fc30b41e1ababe8949a3e2d0f80f5b31f0d7c9f62a67ab233</originalsourceid><addsrcrecordid>eNqFkUuP0zAQxy0EYsvCJ0BCFgduKeN3cgBpWfFYqQsHlrPlOHbrktrFThbl25PS8jzAaaSZ3_zn8UfoMYElEbR53oa030xluyQglqC4ALiDFkRwWgHU8i5aAICsGG_EGXpQyhaAUAHkPjojktOa1mKBzKvgx2zNEFLEJnb4Y4jrsTc5DBO-iKafSig4eWzwdeqdPZTwezd8Tfkz9injYePwVexG-11hBlcprqsbl3f42u1Snh6ie970xT06xXP06c3rm8t31erD26vLi1VlBRFDVXeUSSV4x7xvlOHeMmg5ccS0pnV1wxvDHO3A1-BFy4iHTtnGS2qkMi1l7By9POrux3bnOuvikE2v9znsTJ50MkH_WYlho9fpVhMOjCgxCzw7CeT0ZXRl0LtQrOt7E10ai5ZKca4o_BekQKVkis7g07_AbRrz_NSZIUI2vIbD3uwI2ZxKyc7_XJmAPhitfxg9J4Q-Gj13Pfn92l89J2dn4MURcPPPb4PLutjgonVdyM4OukvhnwO-AZNvvPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215694803</pqid></control><display><type>article</type><title>Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Song, Hao ; Smolen, Paul ; Av-Ron, Evyatar ; Baxter, Douglas A. ; Byrne, John H.</creator><creatorcontrib>Song, Hao ; Smolen, Paul ; Av-Ron, Evyatar ; Baxter, Douglas A. ; Byrne, John H.</creatorcontrib><description>Withdrawal reflexes of the mollusk
Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with
Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.074500</identifier><identifier>PMID: 16428285</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animal memory ; Animals ; Aplysia ; Biochemistry ; Biophysical Theory and Modeling ; Complex systems ; Computer Simulation ; Cyclic AMP - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Gene expression ; Hydrolases - chemistry ; Kinetics ; Learning ; Long-Term Potentiation ; Mathematical models ; Memory ; Models, Biological ; Models, Molecular ; Models, Statistical ; Models, Theoretical ; Mollusca ; Mollusks ; Nervous system ; Neuronal Plasticity ; Neurons - metabolism ; Ordinary differential equations ; Phosphorylation ; Serotonin - metabolism ; Signal Transduction ; Software ; Studies ; Time Factors ; Transcription Factors - metabolism ; Ubiquitin - chemistry</subject><ispartof>Biophysical journal, 2006-04, Vol.90 (7), p.2309-2325</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Apr 1, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-8d236754d3ff97a4fc30b41e1ababe8949a3e2d0f80f5b31f0d7c9f62a67ab233</citedby><cites>FETCH-LOGICAL-c515t-8d236754d3ff97a4fc30b41e1ababe8949a3e2d0f80f5b31f0d7c9f62a67ab233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1403175/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.105.074500$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16428285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Smolen, Paul</creatorcontrib><creatorcontrib>Av-Ron, Evyatar</creatorcontrib><creatorcontrib>Baxter, Douglas A.</creatorcontrib><creatorcontrib>Byrne, John H.</creatorcontrib><title>Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Withdrawal reflexes of the mollusk
Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with
Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.</description><subject>Algorithms</subject><subject>Animal memory</subject><subject>Animals</subject><subject>Aplysia</subject><subject>Biochemistry</subject><subject>Biophysical Theory and Modeling</subject><subject>Complex systems</subject><subject>Computer Simulation</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Gene expression</subject><subject>Hydrolases - chemistry</subject><subject>Kinetics</subject><subject>Learning</subject><subject>Long-Term Potentiation</subject><subject>Mathematical models</subject><subject>Memory</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Mollusca</subject><subject>Mollusks</subject><subject>Nervous system</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Ordinary differential equations</subject><subject>Phosphorylation</subject><subject>Serotonin - metabolism</subject><subject>Signal Transduction</subject><subject>Software</subject><subject>Studies</subject><subject>Time Factors</subject><subject>Transcription Factors - metabolism</subject><subject>Ubiquitin - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUuP0zAQxy0EYsvCJ0BCFgduKeN3cgBpWfFYqQsHlrPlOHbrktrFThbl25PS8jzAaaSZ3_zn8UfoMYElEbR53oa030xluyQglqC4ALiDFkRwWgHU8i5aAICsGG_EGXpQyhaAUAHkPjojktOa1mKBzKvgx2zNEFLEJnb4Y4jrsTc5DBO-iKafSig4eWzwdeqdPZTwezd8Tfkz9injYePwVexG-11hBlcprqsbl3f42u1Snh6ie970xT06xXP06c3rm8t31erD26vLi1VlBRFDVXeUSSV4x7xvlOHeMmg5ccS0pnV1wxvDHO3A1-BFy4iHTtnGS2qkMi1l7By9POrux3bnOuvikE2v9znsTJ50MkH_WYlho9fpVhMOjCgxCzw7CeT0ZXRl0LtQrOt7E10ai5ZKca4o_BekQKVkis7g07_AbRrz_NSZIUI2vIbD3uwI2ZxKyc7_XJmAPhitfxg9J4Q-Gj13Pfn92l89J2dn4MURcPPPb4PLutjgonVdyM4OukvhnwO-AZNvvPM</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Song, Hao</creator><creator>Smolen, Paul</creator><creator>Av-Ron, Evyatar</creator><creator>Baxter, Douglas A.</creator><creator>Byrne, John H.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060401</creationdate><title>Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory</title><author>Song, Hao ; Smolen, Paul ; Av-Ron, Evyatar ; Baxter, Douglas A. ; Byrne, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-8d236754d3ff97a4fc30b41e1ababe8949a3e2d0f80f5b31f0d7c9f62a67ab233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Animal memory</topic><topic>Animals</topic><topic>Aplysia</topic><topic>Biochemistry</topic><topic>Biophysical Theory and Modeling</topic><topic>Complex systems</topic><topic>Computer Simulation</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Gene expression</topic><topic>Hydrolases - chemistry</topic><topic>Kinetics</topic><topic>Learning</topic><topic>Long-Term Potentiation</topic><topic>Mathematical models</topic><topic>Memory</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Mollusca</topic><topic>Mollusks</topic><topic>Nervous system</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Ordinary differential equations</topic><topic>Phosphorylation</topic><topic>Serotonin - metabolism</topic><topic>Signal Transduction</topic><topic>Software</topic><topic>Studies</topic><topic>Time Factors</topic><topic>Transcription Factors - metabolism</topic><topic>Ubiquitin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Smolen, Paul</creatorcontrib><creatorcontrib>Av-Ron, Evyatar</creatorcontrib><creatorcontrib>Baxter, Douglas A.</creatorcontrib><creatorcontrib>Byrne, John H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Hao</au><au>Smolen, Paul</au><au>Av-Ron, Evyatar</au><au>Baxter, Douglas A.</au><au>Byrne, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>90</volume><issue>7</issue><spage>2309</spage><epage>2325</epage><pages>2309-2325</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Withdrawal reflexes of the mollusk
Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with
Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16428285</pmid><doi>10.1529/biophysj.105.074500</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2006-04, Vol.90 (7), p.2309-2325 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1403175 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Animal memory Animals Aplysia Biochemistry Biophysical Theory and Modeling Complex systems Computer Simulation Cyclic AMP - metabolism Cyclic AMP-Dependent Protein Kinases - metabolism Extracellular Signal-Regulated MAP Kinases - metabolism Gene expression Hydrolases - chemistry Kinetics Learning Long-Term Potentiation Mathematical models Memory Models, Biological Models, Molecular Models, Statistical Models, Theoretical Mollusca Mollusks Nervous system Neuronal Plasticity Neurons - metabolism Ordinary differential equations Phosphorylation Serotonin - metabolism Signal Transduction Software Studies Time Factors Transcription Factors - metabolism Ubiquitin - chemistry |
title | Bifurcation and Singularity Analysis of a Molecular Network for the Induction of Long-Term Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20and%20Singularity%20Analysis%20of%20a%20Molecular%20Network%20for%20the%20Induction%20of%20Long-Term%20Memory&rft.jtitle=Biophysical%20journal&rft.au=Song,%20Hao&rft.date=2006-04-01&rft.volume=90&rft.issue=7&rft.spage=2309&rft.epage=2325&rft.pages=2309-2325&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.074500&rft_dat=%3Cproquest_pubme%3E20266372%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215694803&rft_id=info:pmid/16428285&rft_els_id=S000634950672416X&rfr_iscdi=true |