Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression
Hemodynamic shear stress is a fundamental determinant of vascular remodeling and atherogenesis. Changes in focal adhesions, cytoskeletal organization and gene expression are major responses of endothelial cells to shear stress. Here, we show that activation of the small GTPase Rac is essential for g...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2002-12, Vol.21 (24), p.6791-6800 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6800 |
---|---|
container_issue | 24 |
container_start_page | 6791 |
container_title | The EMBO journal |
container_volume | 21 |
creator | Tzima, Eleni Del Pozo, Miguel Angel Kiosses, William B. Mohamed, Samih A. Li, Song Chien, Shu Schwartz, Martin Alexander |
description | Hemodynamic shear stress is a fundamental determinant of vascular remodeling and atherogenesis. Changes in focal adhesions, cytoskeletal organization and gene expression are major responses of endothelial cells to shear stress. Here, we show that activation of the small GTPase Rac is essential for gene expression and for providing spatial information for shear stress‐induced cell alignment. Fluorescence resonance energy transfer (FRET) localizes activated Rac1 in the direction of flow. This directional Rac1 activation is downstream of shear‐induced new integrin binding to extracellular matrix. Additionally, Rac1 mediates flow‐induced stimulation of nuclear factor κB (NF‐κB) and the subsequent expression of intercellular cell adhesion molecule 1 (ICAM‐1), an adhesion receptor involved in the recruitment of leukocytes to atherosclerotic plaque. These studies provide a unifying model linking three of the main responses to shear stress that mediate both normal adaptation to hemodynamic forces and inflammatory dysfunction of endothelial cells in atherosclerosis. |
doi_str_mv | 10.1093/emboj/cdf688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_139108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72768501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5945-18bc3ff4d0f227f027bf68826de1949a22562c8f4999f081db1630f7dc1fe2613</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxS0EomnhxhlZHDh1qe1d764PHEppw0f5EALBzfJ6x4nTjR1spzSc-NNx2KgUhDhZo_m95zczCD2g5AklojyCZecXR7o3ddveQhNa1aRgpOG30YSwmhYVbcUe2o9xQQjhbUPvoj3KqrbO5QT9ONbJXqpkvcPe4A9KU9xtcJyDCjimADFi6zC43qc5DFYNWMMwRLyE3qoEEXe5gfUm-XgBA6QMBPBhppz9Ptoq12MwBnSKOJczcIDharW1zu176I5RQ4T7u_cAfTo7_Xjyojh_N315cnxeaC4qXtC206UxVU8MY40hrOm2A7O6ByoqoRjjNdOtqYQQhrS072hdEtP0mhrIaygP0NPRd7XucnYNLgU1yFWwSxU20isr_-w4O5czfylpKShps_7xTh_81zXEJJc2blehHPh1lA1r6paT7UeP_gIXfh1cnk1SwVklasEydDhCOvgYA5jrIJTI7Vnlr7PK8awZf3gz_G94d8cM8BH4ZgfY_NdMnr559qrJSxWEZ10x6mKWuBmEG2H_HWTH25jg6vofFS5k3ZQNl5_fTuX0_esv_Lkg8qz8CYsk0oc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195249692</pqid></control><display><type>article</type><title>Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tzima, Eleni ; Del Pozo, Miguel Angel ; Kiosses, William B. ; Mohamed, Samih A. ; Li, Song ; Chien, Shu ; Schwartz, Martin Alexander</creator><creatorcontrib>Tzima, Eleni ; Del Pozo, Miguel Angel ; Kiosses, William B. ; Mohamed, Samih A. ; Li, Song ; Chien, Shu ; Schwartz, Martin Alexander</creatorcontrib><description>Hemodynamic shear stress is a fundamental determinant of vascular remodeling and atherogenesis. Changes in focal adhesions, cytoskeletal organization and gene expression are major responses of endothelial cells to shear stress. Here, we show that activation of the small GTPase Rac is essential for gene expression and for providing spatial information for shear stress‐induced cell alignment. Fluorescence resonance energy transfer (FRET) localizes activated Rac1 in the direction of flow. This directional Rac1 activation is downstream of shear‐induced new integrin binding to extracellular matrix. Additionally, Rac1 mediates flow‐induced stimulation of nuclear factor κB (NF‐κB) and the subsequent expression of intercellular cell adhesion molecule 1 (ICAM‐1), an adhesion receptor involved in the recruitment of leukocytes to atherosclerotic plaque. These studies provide a unifying model linking three of the main responses to shear stress that mediate both normal adaptation to hemodynamic forces and inflammatory dysfunction of endothelial cells in atherosclerosis.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/cdf688</identifier><identifier>PMID: 12486000</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Adhesion ; Animals ; Cattle ; Cell Adhesion ; Cells, Cultured ; cytoskeleton ; Cytoskeleton - metabolism ; Dimerization ; EMBO05 ; EMBO37 ; Energy Transfer ; Enzyme Activation ; fluid shear stress ; Gene Expression Regulation ; Genes, Dominant ; Green Fluorescent Proteins ; GTP Phosphohydrolases - metabolism ; Intercellular Adhesion Molecule-1 - metabolism ; Leukocytes - metabolism ; Luciferases - metabolism ; Luminescent Proteins - metabolism ; mechanotransduction ; Microscopy, Fluorescence ; NF-kappa B - metabolism ; NF-κB ; Plasmids - metabolism ; Protein Transport ; rac GTP-Binding Proteins - metabolism ; Rac GTPase ; rac1 GTP-Binding Protein - metabolism ; Shear stress ; Spectrometry, Fluorescence ; Stress, Mechanical ; Time Factors ; Transfection</subject><ispartof>The EMBO journal, 2002-12, Vol.21 (24), p.6791-6800</ispartof><rights>European Molecular Biology Organization 2002</rights><rights>Copyright © 2002 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Dec 16, 2002</rights><rights>Copyright © 2002 European Molecular Biology Organization 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5945-18bc3ff4d0f227f027bf68826de1949a22562c8f4999f081db1630f7dc1fe2613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC139108/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC139108/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12486000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tzima, Eleni</creatorcontrib><creatorcontrib>Del Pozo, Miguel Angel</creatorcontrib><creatorcontrib>Kiosses, William B.</creatorcontrib><creatorcontrib>Mohamed, Samih A.</creatorcontrib><creatorcontrib>Li, Song</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Schwartz, Martin Alexander</creatorcontrib><title>Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Hemodynamic shear stress is a fundamental determinant of vascular remodeling and atherogenesis. Changes in focal adhesions, cytoskeletal organization and gene expression are major responses of endothelial cells to shear stress. Here, we show that activation of the small GTPase Rac is essential for gene expression and for providing spatial information for shear stress‐induced cell alignment. Fluorescence resonance energy transfer (FRET) localizes activated Rac1 in the direction of flow. This directional Rac1 activation is downstream of shear‐induced new integrin binding to extracellular matrix. Additionally, Rac1 mediates flow‐induced stimulation of nuclear factor κB (NF‐κB) and the subsequent expression of intercellular cell adhesion molecule 1 (ICAM‐1), an adhesion receptor involved in the recruitment of leukocytes to atherosclerotic plaque. These studies provide a unifying model linking three of the main responses to shear stress that mediate both normal adaptation to hemodynamic forces and inflammatory dysfunction of endothelial cells in atherosclerosis.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Cattle</subject><subject>Cell Adhesion</subject><subject>Cells, Cultured</subject><subject>cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Dimerization</subject><subject>EMBO05</subject><subject>EMBO37</subject><subject>Energy Transfer</subject><subject>Enzyme Activation</subject><subject>fluid shear stress</subject><subject>Gene Expression Regulation</subject><subject>Genes, Dominant</subject><subject>Green Fluorescent Proteins</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Intercellular Adhesion Molecule-1 - metabolism</subject><subject>Leukocytes - metabolism</subject><subject>Luciferases - metabolism</subject><subject>Luminescent Proteins - metabolism</subject><subject>mechanotransduction</subject><subject>Microscopy, Fluorescence</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB</subject><subject>Plasmids - metabolism</subject><subject>Protein Transport</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>Rac GTPase</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Shear stress</subject><subject>Spectrometry, Fluorescence</subject><subject>Stress, Mechanical</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1vEzEQxS0EomnhxhlZHDh1qe1d764PHEppw0f5EALBzfJ6x4nTjR1spzSc-NNx2KgUhDhZo_m95zczCD2g5AklojyCZecXR7o3ddveQhNa1aRgpOG30YSwmhYVbcUe2o9xQQjhbUPvoj3KqrbO5QT9ONbJXqpkvcPe4A9KU9xtcJyDCjimADFi6zC43qc5DFYNWMMwRLyE3qoEEXe5gfUm-XgBA6QMBPBhppz9Ptoq12MwBnSKOJczcIDharW1zu176I5RQ4T7u_cAfTo7_Xjyojh_N315cnxeaC4qXtC206UxVU8MY40hrOm2A7O6ByoqoRjjNdOtqYQQhrS072hdEtP0mhrIaygP0NPRd7XucnYNLgU1yFWwSxU20isr_-w4O5czfylpKShps_7xTh_81zXEJJc2blehHPh1lA1r6paT7UeP_gIXfh1cnk1SwVklasEydDhCOvgYA5jrIJTI7Vnlr7PK8awZf3gz_G94d8cM8BH4ZgfY_NdMnr559qrJSxWEZ10x6mKWuBmEG2H_HWTH25jg6vofFS5k3ZQNl5_fTuX0_esv_Lkg8qz8CYsk0oc</recordid><startdate>20021216</startdate><enddate>20021216</enddate><creator>Tzima, Eleni</creator><creator>Del Pozo, Miguel Angel</creator><creator>Kiosses, William B.</creator><creator>Mohamed, Samih A.</creator><creator>Li, Song</creator><creator>Chien, Shu</creator><creator>Schwartz, Martin Alexander</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021216</creationdate><title>Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression</title><author>Tzima, Eleni ; Del Pozo, Miguel Angel ; Kiosses, William B. ; Mohamed, Samih A. ; Li, Song ; Chien, Shu ; Schwartz, Martin Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5945-18bc3ff4d0f227f027bf68826de1949a22562c8f4999f081db1630f7dc1fe2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Cattle</topic><topic>Cell Adhesion</topic><topic>Cells, Cultured</topic><topic>cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Dimerization</topic><topic>EMBO05</topic><topic>EMBO37</topic><topic>Energy Transfer</topic><topic>Enzyme Activation</topic><topic>fluid shear stress</topic><topic>Gene Expression Regulation</topic><topic>Genes, Dominant</topic><topic>Green Fluorescent Proteins</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Intercellular Adhesion Molecule-1 - metabolism</topic><topic>Leukocytes - metabolism</topic><topic>Luciferases - metabolism</topic><topic>Luminescent Proteins - metabolism</topic><topic>mechanotransduction</topic><topic>Microscopy, Fluorescence</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB</topic><topic>Plasmids - metabolism</topic><topic>Protein Transport</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>Rac GTPase</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Shear stress</topic><topic>Spectrometry, Fluorescence</topic><topic>Stress, Mechanical</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzima, Eleni</creatorcontrib><creatorcontrib>Del Pozo, Miguel Angel</creatorcontrib><creatorcontrib>Kiosses, William B.</creatorcontrib><creatorcontrib>Mohamed, Samih A.</creatorcontrib><creatorcontrib>Li, Song</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Schwartz, Martin Alexander</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzima, Eleni</au><au>Del Pozo, Miguel Angel</au><au>Kiosses, William B.</au><au>Mohamed, Samih A.</au><au>Li, Song</au><au>Chien, Shu</au><au>Schwartz, Martin Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2002-12-16</date><risdate>2002</risdate><volume>21</volume><issue>24</issue><spage>6791</spage><epage>6800</epage><pages>6791-6800</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Hemodynamic shear stress is a fundamental determinant of vascular remodeling and atherogenesis. Changes in focal adhesions, cytoskeletal organization and gene expression are major responses of endothelial cells to shear stress. Here, we show that activation of the small GTPase Rac is essential for gene expression and for providing spatial information for shear stress‐induced cell alignment. Fluorescence resonance energy transfer (FRET) localizes activated Rac1 in the direction of flow. This directional Rac1 activation is downstream of shear‐induced new integrin binding to extracellular matrix. Additionally, Rac1 mediates flow‐induced stimulation of nuclear factor κB (NF‐κB) and the subsequent expression of intercellular cell adhesion molecule 1 (ICAM‐1), an adhesion receptor involved in the recruitment of leukocytes to atherosclerotic plaque. These studies provide a unifying model linking three of the main responses to shear stress that mediate both normal adaptation to hemodynamic forces and inflammatory dysfunction of endothelial cells in atherosclerosis.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>12486000</pmid><doi>10.1093/emboj/cdf688</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2002-12, Vol.21 (24), p.6791-6800 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_139108 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adhesion Animals Cattle Cell Adhesion Cells, Cultured cytoskeleton Cytoskeleton - metabolism Dimerization EMBO05 EMBO37 Energy Transfer Enzyme Activation fluid shear stress Gene Expression Regulation Genes, Dominant Green Fluorescent Proteins GTP Phosphohydrolases - metabolism Intercellular Adhesion Molecule-1 - metabolism Leukocytes - metabolism Luciferases - metabolism Luminescent Proteins - metabolism mechanotransduction Microscopy, Fluorescence NF-kappa B - metabolism NF-κB Plasmids - metabolism Protein Transport rac GTP-Binding Proteins - metabolism Rac GTPase rac1 GTP-Binding Protein - metabolism Shear stress Spectrometry, Fluorescence Stress, Mechanical Time Factors Transfection |
title | Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20Rac1%20by%20shear%20stress%20in%20endothelial%20cells%20mediates%20both%20cytoskeletal%20reorganization%20and%20effects%20on%20gene%20expression&rft.jtitle=The%20EMBO%20journal&rft.au=Tzima,%20Eleni&rft.date=2002-12-16&rft.volume=21&rft.issue=24&rft.spage=6791&rft.epage=6800&rft.pages=6791-6800&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/cdf688&rft_dat=%3Cproquest_pubme%3E72768501%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195249692&rft_id=info:pmid/12486000&rfr_iscdi=true |