Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization

Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2006-03, Vol.90 (6), p.2170-2178
Hauptverfasser: Shaw, James E., Epand, Raquel F., Epand, Richard M., Li, Zaiguo, Bittman, Robert, Yip, Christopher M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2178
container_issue 6
container_start_page 2170
container_title Biophysical journal
container_volume 90
creator Shaw, James E.
Epand, Raquel F.
Epand, Richard M.
Li, Zaiguo
Bittman, Robert
Yip, Christopher M.
description Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.
doi_str_mv 10.1529/biophysj.105.073510
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1386795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349506724018</els_id><sourcerecordid>67705644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-a389a4b943b28a712a6d39c98a247c6b819700e753a30edf6266c93aedece3f23</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EokvhFyAhiwO3LHYc2zESSNWWpZW2Agk4W44zoV4lcWo7lZYrfxyvdiktB062PN88z5uH0EtKlpSX6m3j_HS9i9slJXxJJOOUPEILyquyIKQWj9GCECIKVil-gp7FuCWElpzQp-iECiYoq-QC_Vr5EKA3CVq87mcfIFoYLRRnyQ_O4rUPFvCVs8FH66cd9h2-gqEJZgR87gfjxvgOf01htmkOsC_fl8Ffgm8g4nNIEAY35uvGTa7FG29N736a5Pz4HD3pTB_hxfE8Rd_XH7-tLorN50-Xq7NNYTknqTCsVqZqVMWasjaSlka0TFlVm7KSVjQ1VZIQkJwZRqDtRCmEVcxACxZYV7JT9OGgO83NAG0eMAXT6ym4wYSd9sbph5XRXesf_lZTVgupeBZ4cxQI_maGmPTgss--z8vwc9RCSsJFVWXw9T_g1s9hzOZ0SblQSkmZIXaA9ruNAbq7SSjR-4T1n4TzA9eHhHPXq_sm_vYcI83A-wMAeZW3DoKO1u2zaF0Am3Tr3X8_-A0Ovrya</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215699977</pqid></control><display><type>article</type><title>Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shaw, James E. ; Epand, Raquel F. ; Epand, Richard M. ; Li, Zaiguo ; Bittman, Robert ; Yip, Christopher M.</creator><creatorcontrib>Shaw, James E. ; Epand, Raquel F. ; Epand, Richard M. ; Li, Zaiguo ; Bittman, Robert ; Yip, Christopher M.</creatorcontrib><description>Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.073510</identifier><identifier>PMID: 16361347</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysics ; Fluorescence ; Fluorescent Dyes - chemistry ; Lipid Bilayers - chemistry ; Lipids ; Membrane Fluidity ; Membrane Microdomains - chemistry ; Membrane Microdomains - ultrastructure ; Microscopy, Atomic Force - methods ; Microscopy, Fluorescence - methods ; Molecular Conformation ; Phase Transition ; Spectroscopy, Imaging, Other Techniques</subject><ispartof>Biophysical journal, 2006-03, Vol.90 (6), p.2170-2178</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Mar 15, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-a389a4b943b28a712a6d39c98a247c6b819700e753a30edf6266c93aedece3f23</citedby><cites>FETCH-LOGICAL-c550t-a389a4b943b28a712a6d39c98a247c6b819700e753a30edf6266c93aedece3f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1386795/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.105.073510$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16361347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, James E.</creatorcontrib><creatorcontrib>Epand, Raquel F.</creatorcontrib><creatorcontrib>Epand, Richard M.</creatorcontrib><creatorcontrib>Li, Zaiguo</creatorcontrib><creatorcontrib>Bittman, Robert</creatorcontrib><creatorcontrib>Yip, Christopher M.</creatorcontrib><title>Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.</description><subject>Biophysics</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Fluidity</subject><subject>Membrane Microdomains - chemistry</subject><subject>Membrane Microdomains - ultrastructure</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Molecular Conformation</subject><subject>Phase Transition</subject><subject>Spectroscopy, Imaging, Other Techniques</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUFv1DAQhS0EokvhFyAhiwO3LHYc2zESSNWWpZW2Agk4W44zoV4lcWo7lZYrfxyvdiktB062PN88z5uH0EtKlpSX6m3j_HS9i9slJXxJJOOUPEILyquyIKQWj9GCECIKVil-gp7FuCWElpzQp-iECiYoq-QC_Vr5EKA3CVq87mcfIFoYLRRnyQ_O4rUPFvCVs8FH66cd9h2-gqEJZgR87gfjxvgOf01htmkOsC_fl8Ffgm8g4nNIEAY35uvGTa7FG29N736a5Pz4HD3pTB_hxfE8Rd_XH7-tLorN50-Xq7NNYTknqTCsVqZqVMWasjaSlka0TFlVm7KSVjQ1VZIQkJwZRqDtRCmEVcxACxZYV7JT9OGgO83NAG0eMAXT6ym4wYSd9sbph5XRXesf_lZTVgupeBZ4cxQI_maGmPTgss--z8vwc9RCSsJFVWXw9T_g1s9hzOZ0SblQSkmZIXaA9ruNAbq7SSjR-4T1n4TzA9eHhHPXq_sm_vYcI83A-wMAeZW3DoKO1u2zaF0Am3Tr3X8_-A0Ovrya</recordid><startdate>20060315</startdate><enddate>20060315</enddate><creator>Shaw, James E.</creator><creator>Epand, Raquel F.</creator><creator>Epand, Richard M.</creator><creator>Li, Zaiguo</creator><creator>Bittman, Robert</creator><creator>Yip, Christopher M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060315</creationdate><title>Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization</title><author>Shaw, James E. ; Epand, Raquel F. ; Epand, Richard M. ; Li, Zaiguo ; Bittman, Robert ; Yip, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-a389a4b943b28a712a6d39c98a247c6b819700e753a30edf6266c93aedece3f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biophysics</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Fluidity</topic><topic>Membrane Microdomains - chemistry</topic><topic>Membrane Microdomains - ultrastructure</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Molecular Conformation</topic><topic>Phase Transition</topic><topic>Spectroscopy, Imaging, Other Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, James E.</creatorcontrib><creatorcontrib>Epand, Raquel F.</creatorcontrib><creatorcontrib>Epand, Richard M.</creatorcontrib><creatorcontrib>Li, Zaiguo</creatorcontrib><creatorcontrib>Bittman, Robert</creatorcontrib><creatorcontrib>Yip, Christopher M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, James E.</au><au>Epand, Raquel F.</au><au>Epand, Richard M.</au><au>Li, Zaiguo</au><au>Bittman, Robert</au><au>Yip, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-03-15</date><risdate>2006</risdate><volume>90</volume><issue>6</issue><spage>2170</spage><epage>2178</epage><pages>2170-2178</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16361347</pmid><doi>10.1529/biophysj.105.073510</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2006-03, Vol.90 (6), p.2170-2178
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1386795
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biophysics
Fluorescence
Fluorescent Dyes - chemistry
Lipid Bilayers - chemistry
Lipids
Membrane Fluidity
Membrane Microdomains - chemistry
Membrane Microdomains - ultrastructure
Microscopy, Atomic Force - methods
Microscopy, Fluorescence - methods
Molecular Conformation
Phase Transition
Spectroscopy, Imaging, Other Techniques
title Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20Fluorescence-Atomic%20Force%20Microscopy%20of%20Membrane%20Domains:%20Structure%20of%20Fluorescence%20Probes%20Determines%20Lipid%20Localization&rft.jtitle=Biophysical%20journal&rft.au=Shaw,%20James%20E.&rft.date=2006-03-15&rft.volume=90&rft.issue=6&rft.spage=2170&rft.epage=2178&rft.pages=2170-2178&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.073510&rft_dat=%3Cproquest_pubme%3E67705644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215699977&rft_id=info:pmid/16361347&rft_els_id=S0006349506724018&rfr_iscdi=true