Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization
Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in s...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2006-03, Vol.90 (6), p.2170-2178 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2178 |
---|---|
container_issue | 6 |
container_start_page | 2170 |
container_title | Biophysical journal |
container_volume | 90 |
creator | Shaw, James E. Epand, Raquel F. Epand, Richard M. Li, Zaiguo Bittman, Robert Yip, Christopher M. |
description | Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers. |
doi_str_mv | 10.1529/biophysj.105.073510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1386795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349506724018</els_id><sourcerecordid>67705644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-a389a4b943b28a712a6d39c98a247c6b819700e753a30edf6266c93aedece3f23</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EokvhFyAhiwO3LHYc2zESSNWWpZW2Agk4W44zoV4lcWo7lZYrfxyvdiktB062PN88z5uH0EtKlpSX6m3j_HS9i9slJXxJJOOUPEILyquyIKQWj9GCECIKVil-gp7FuCWElpzQp-iECiYoq-QC_Vr5EKA3CVq87mcfIFoYLRRnyQ_O4rUPFvCVs8FH66cd9h2-gqEJZgR87gfjxvgOf01htmkOsC_fl8Ffgm8g4nNIEAY35uvGTa7FG29N736a5Pz4HD3pTB_hxfE8Rd_XH7-tLorN50-Xq7NNYTknqTCsVqZqVMWasjaSlka0TFlVm7KSVjQ1VZIQkJwZRqDtRCmEVcxACxZYV7JT9OGgO83NAG0eMAXT6ym4wYSd9sbph5XRXesf_lZTVgupeBZ4cxQI_maGmPTgss--z8vwc9RCSsJFVWXw9T_g1s9hzOZ0SblQSkmZIXaA9ruNAbq7SSjR-4T1n4TzA9eHhHPXq_sm_vYcI83A-wMAeZW3DoKO1u2zaF0Am3Tr3X8_-A0Ovrya</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215699977</pqid></control><display><type>article</type><title>Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shaw, James E. ; Epand, Raquel F. ; Epand, Richard M. ; Li, Zaiguo ; Bittman, Robert ; Yip, Christopher M.</creator><creatorcontrib>Shaw, James E. ; Epand, Raquel F. ; Epand, Richard M. ; Li, Zaiguo ; Bittman, Robert ; Yip, Christopher M.</creatorcontrib><description>Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.073510</identifier><identifier>PMID: 16361347</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysics ; Fluorescence ; Fluorescent Dyes - chemistry ; Lipid Bilayers - chemistry ; Lipids ; Membrane Fluidity ; Membrane Microdomains - chemistry ; Membrane Microdomains - ultrastructure ; Microscopy, Atomic Force - methods ; Microscopy, Fluorescence - methods ; Molecular Conformation ; Phase Transition ; Spectroscopy, Imaging, Other Techniques</subject><ispartof>Biophysical journal, 2006-03, Vol.90 (6), p.2170-2178</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Mar 15, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-a389a4b943b28a712a6d39c98a247c6b819700e753a30edf6266c93aedece3f23</citedby><cites>FETCH-LOGICAL-c550t-a389a4b943b28a712a6d39c98a247c6b819700e753a30edf6266c93aedece3f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1386795/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.105.073510$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16361347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, James E.</creatorcontrib><creatorcontrib>Epand, Raquel F.</creatorcontrib><creatorcontrib>Epand, Richard M.</creatorcontrib><creatorcontrib>Li, Zaiguo</creatorcontrib><creatorcontrib>Bittman, Robert</creatorcontrib><creatorcontrib>Yip, Christopher M.</creatorcontrib><title>Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.</description><subject>Biophysics</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Fluidity</subject><subject>Membrane Microdomains - chemistry</subject><subject>Membrane Microdomains - ultrastructure</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Molecular Conformation</subject><subject>Phase Transition</subject><subject>Spectroscopy, Imaging, Other Techniques</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUFv1DAQhS0EokvhFyAhiwO3LHYc2zESSNWWpZW2Agk4W44zoV4lcWo7lZYrfxyvdiktB062PN88z5uH0EtKlpSX6m3j_HS9i9slJXxJJOOUPEILyquyIKQWj9GCECIKVil-gp7FuCWElpzQp-iECiYoq-QC_Vr5EKA3CVq87mcfIFoYLRRnyQ_O4rUPFvCVs8FH66cd9h2-gqEJZgR87gfjxvgOf01htmkOsC_fl8Ffgm8g4nNIEAY35uvGTa7FG29N736a5Pz4HD3pTB_hxfE8Rd_XH7-tLorN50-Xq7NNYTknqTCsVqZqVMWasjaSlka0TFlVm7KSVjQ1VZIQkJwZRqDtRCmEVcxACxZYV7JT9OGgO83NAG0eMAXT6ym4wYSd9sbph5XRXesf_lZTVgupeBZ4cxQI_maGmPTgss--z8vwc9RCSsJFVWXw9T_g1s9hzOZ0SblQSkmZIXaA9ruNAbq7SSjR-4T1n4TzA9eHhHPXq_sm_vYcI83A-wMAeZW3DoKO1u2zaF0Am3Tr3X8_-A0Ovrya</recordid><startdate>20060315</startdate><enddate>20060315</enddate><creator>Shaw, James E.</creator><creator>Epand, Raquel F.</creator><creator>Epand, Richard M.</creator><creator>Li, Zaiguo</creator><creator>Bittman, Robert</creator><creator>Yip, Christopher M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060315</creationdate><title>Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization</title><author>Shaw, James E. ; Epand, Raquel F. ; Epand, Richard M. ; Li, Zaiguo ; Bittman, Robert ; Yip, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-a389a4b943b28a712a6d39c98a247c6b819700e753a30edf6266c93aedece3f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biophysics</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Fluidity</topic><topic>Membrane Microdomains - chemistry</topic><topic>Membrane Microdomains - ultrastructure</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Molecular Conformation</topic><topic>Phase Transition</topic><topic>Spectroscopy, Imaging, Other Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, James E.</creatorcontrib><creatorcontrib>Epand, Raquel F.</creatorcontrib><creatorcontrib>Epand, Richard M.</creatorcontrib><creatorcontrib>Li, Zaiguo</creatorcontrib><creatorcontrib>Bittman, Robert</creatorcontrib><creatorcontrib>Yip, Christopher M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, James E.</au><au>Epand, Raquel F.</au><au>Epand, Richard M.</au><au>Li, Zaiguo</au><au>Bittman, Robert</au><au>Yip, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-03-15</date><risdate>2006</risdate><volume>90</volume><issue>6</issue><spage>2170</spage><epage>2178</epage><pages>2170-2178</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16361347</pmid><doi>10.1529/biophysj.105.073510</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2006-03, Vol.90 (6), p.2170-2178 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1386795 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biophysics Fluorescence Fluorescent Dyes - chemistry Lipid Bilayers - chemistry Lipids Membrane Fluidity Membrane Microdomains - chemistry Membrane Microdomains - ultrastructure Microscopy, Atomic Force - methods Microscopy, Fluorescence - methods Molecular Conformation Phase Transition Spectroscopy, Imaging, Other Techniques |
title | Correlated Fluorescence-Atomic Force Microscopy of Membrane Domains: Structure of Fluorescence Probes Determines Lipid Localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20Fluorescence-Atomic%20Force%20Microscopy%20of%20Membrane%20Domains:%20Structure%20of%20Fluorescence%20Probes%20Determines%20Lipid%20Localization&rft.jtitle=Biophysical%20journal&rft.au=Shaw,%20James%20E.&rft.date=2006-03-15&rft.volume=90&rft.issue=6&rft.spage=2170&rft.epage=2178&rft.pages=2170-2178&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.073510&rft_dat=%3Cproquest_pubme%3E67705644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215699977&rft_id=info:pmid/16361347&rft_els_id=S0006349506724018&rfr_iscdi=true |