Deciphering the Ancient and Complex Evolutionary History of Human Arylamine N-Acetyltransferase Genes

The human N-acetyltransferase genes NAT1 and NAT2 encode two phase-II enzymes that metabolize various drugs and carcinogens. Functional variability at these genes has been associated with adverse drug reactions and cancer susceptibility. Mutations in NAT2 leading to the so-called slow-acetylation ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2006-03, Vol.78 (3), p.423-436
Hauptverfasser: Patin, Etienne, Barreiro, Luis B., Sabeti, Pardis C., Austerlitz, Frédéric, Luca, Francesca, Sajantila, Antti, Behar, Doron M., Semino, Ornella, Sakuntabhai, Anavaj, Guiso, Nicole, Gicquel, Brigitte, McElreavey, Ken, Harding, Rosalind M., Heyer, Evelyne, Quintana-Murci, Lluís
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 3
container_start_page 423
container_title American journal of human genetics
container_volume 78
creator Patin, Etienne
Barreiro, Luis B.
Sabeti, Pardis C.
Austerlitz, Frédéric
Luca, Francesca
Sajantila, Antti
Behar, Doron M.
Semino, Ornella
Sakuntabhai, Anavaj
Guiso, Nicole
Gicquel, Brigitte
McElreavey, Ken
Harding, Rosalind M.
Heyer, Evelyne
Quintana-Murci, Lluís
description The human N-acetyltransferase genes NAT1 and NAT2 encode two phase-II enzymes that metabolize various drugs and carcinogens. Functional variability at these genes has been associated with adverse drug reactions and cancer susceptibility. Mutations in NAT2 leading to the so-called slow-acetylation phenotype reach high frequencies worldwide, which questions the significance of altered acetylation in human adaptation. To investigate the role of population history and natural selection in shaping NATs variation, we characterized genetic diversity through the resequencing and genotyping of NAT1, NAT2, and the pseudogene NATP in a collection of 13 different populations with distinct ethnic backgrounds and demographic pasts. This combined study design allowed us to define a detailed map of linkage disequilibrium of the NATs region as well as to perform a number of sequence-based neutrality tests and the long-range haplotype (LRH) test. Our data revealed distinctive patterns of variability for the two genes: the reduced diversity observed at NAT1 is consistent with the action of purifying selection, whereas NAT2 functional variation contributes to high levels of diversity. In addition, the LRH test identified a particular NAT2 haplotype ( NAT2*5B) under recent positive selection in western/central Eurasians. This haplotype harbors the mutation 341T→C and encodes the “slowest-acetylator” NAT2 enzyme, suggesting a general selective advantage for the slow-acetylator phenotype. Interestingly, the NAT2*5B haplotype, which seems to have conferred a selective advantage during the past ∼6,500 years, exhibits today the strongest association with susceptibility to bladder cancer and adverse drug reactions. On the whole, the patterns observed for NAT2 well illustrate how geographically and temporally fluctuating xenobiotic environments may have influenced not only our genome variability but also our present-day susceptibility to disease.
doi_str_mv 10.1086/500614
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1380286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929707623829</els_id><sourcerecordid>1004390891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-19dbc14286fb2e97e9a229673a3dab9bffbef1a504a16abfeb491409ae0bd3a23</originalsourceid><addsrcrecordid>eNpdkU-P0zAQxSMEYssCHwFZSHAL-E_ixBekqCxbpAoucLYmzmTrVWIHO6not8dVKwo9zcE_vzfzXpa9ZvQDo7X8WFIqWfEkW7FSVLmUtHyarSilPFdcVTfZixgfKWWspuJ5dsNkwaRQapXhZzR22mGw7oHMOySNMxbdTMB1ZO3HacDf5G7vh2W23kE4kI2Ns0_T92SzjOBIEw4DjNYh-ZY3BufDMAdwsccAEck9Oowvs2c9DBFfnedt9vPL3Y_1Jt9-v_-6bra5KQWbc6a61rCC17JvOaoKFXCuZCVAdNCqtu9b7BmUtAAmoe2xLRQrqAKkbSeAi9vs00l3WtoRO5MOCTDoKdgxra49WP3_i7M7_eD3momaJtskkJ8EdlffNs1WTxBnXIJOOUoluNyzxL8_Gwb_a8E469FGg8MADv0SNat4UYryKPz2Cnz0S3ApDM2ZkrSuRX1RM8HHGLD_uwKj-lizPtWcwDf_3nnBzr0m4N0ZgGhg6FMhxsYLV5W8LtkxMHriMLWytxh0PNZvsLMBzaw7b6-9_wAJkMBU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219608838</pqid></control><display><type>article</type><title>Deciphering the Ancient and Complex Evolutionary History of Human Arylamine N-Acetyltransferase Genes</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Patin, Etienne ; Barreiro, Luis B. ; Sabeti, Pardis C. ; Austerlitz, Frédéric ; Luca, Francesca ; Sajantila, Antti ; Behar, Doron M. ; Semino, Ornella ; Sakuntabhai, Anavaj ; Guiso, Nicole ; Gicquel, Brigitte ; McElreavey, Ken ; Harding, Rosalind M. ; Heyer, Evelyne ; Quintana-Murci, Lluís</creator><creatorcontrib>Patin, Etienne ; Barreiro, Luis B. ; Sabeti, Pardis C. ; Austerlitz, Frédéric ; Luca, Francesca ; Sajantila, Antti ; Behar, Doron M. ; Semino, Ornella ; Sakuntabhai, Anavaj ; Guiso, Nicole ; Gicquel, Brigitte ; McElreavey, Ken ; Harding, Rosalind M. ; Heyer, Evelyne ; Quintana-Murci, Lluís</creatorcontrib><description>The human N-acetyltransferase genes NAT1 and NAT2 encode two phase-II enzymes that metabolize various drugs and carcinogens. Functional variability at these genes has been associated with adverse drug reactions and cancer susceptibility. Mutations in NAT2 leading to the so-called slow-acetylation phenotype reach high frequencies worldwide, which questions the significance of altered acetylation in human adaptation. To investigate the role of population history and natural selection in shaping NATs variation, we characterized genetic diversity through the resequencing and genotyping of NAT1, NAT2, and the pseudogene NATP in a collection of 13 different populations with distinct ethnic backgrounds and demographic pasts. This combined study design allowed us to define a detailed map of linkage disequilibrium of the NATs region as well as to perform a number of sequence-based neutrality tests and the long-range haplotype (LRH) test. Our data revealed distinctive patterns of variability for the two genes: the reduced diversity observed at NAT1 is consistent with the action of purifying selection, whereas NAT2 functional variation contributes to high levels of diversity. In addition, the LRH test identified a particular NAT2 haplotype ( NAT2*5B) under recent positive selection in western/central Eurasians. This haplotype harbors the mutation 341T→C and encodes the “slowest-acetylator” NAT2 enzyme, suggesting a general selective advantage for the slow-acetylator phenotype. Interestingly, the NAT2*5B haplotype, which seems to have conferred a selective advantage during the past ∼6,500 years, exhibits today the strongest association with susceptibility to bladder cancer and adverse drug reactions. On the whole, the patterns observed for NAT2 well illustrate how geographically and temporally fluctuating xenobiotic environments may have influenced not only our genome variability but also our present-day susceptibility to disease.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1086/500614</identifier><identifier>PMID: 16416399</identifier><identifier>CODEN: AJHGAG</identifier><language>eng</language><publisher>Chicago, IL: Elsevier Inc</publisher><subject>Acetylation ; Adaptation, Physiological ; Adaptation, Physiological - genetics ; Amino Acid Sequence ; Arylamine N-Acetyltransferase ; Arylamine N-Acetyltransferase - genetics ; Biological and medical sciences ; Cancer ; Drugs ; Environment and Society ; Environmental Sciences ; Enzymes ; Evolution ; Evolution, Molecular ; Female ; General aspects. Genetic counseling ; Genes ; Genetic Variation ; Geography ; Global Changes ; Haplotypes ; Human health and pathology ; Humans ; Infectious diseases ; Isoenzymes ; Isoenzymes - genetics ; Life Sciences ; Linkage Disequilibrium ; Male ; Medical genetics ; Medical sciences ; Molecular Sequence Data ; Mutation ; Phenotype ; Population ; Population - genetics ; Variation (Genetics)</subject><ispartof>American journal of human genetics, 2006-03, Vol.78 (3), p.423-436</ispartof><rights>2006 The American Society of Human Genetics</rights><rights>2006 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Mar 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2006 by The American Society of Human Genetics. All rights reserved. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-19dbc14286fb2e97e9a229673a3dab9bffbef1a504a16abfeb491409ae0bd3a23</citedby><cites>FETCH-LOGICAL-c531t-19dbc14286fb2e97e9a229673a3dab9bffbef1a504a16abfeb491409ae0bd3a23</cites><orcidid>0000-0001-9099-6937 ; 0000-0003-2429-6320 ; 0000-0001-8031-455X ; 0000-0001-6582-1801 ; 0000-0002-0266-3196 ; 0000-0002-9911-4459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1380286/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929707623829$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17528512$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16416399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-00169326$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Patin, Etienne</creatorcontrib><creatorcontrib>Barreiro, Luis B.</creatorcontrib><creatorcontrib>Sabeti, Pardis C.</creatorcontrib><creatorcontrib>Austerlitz, Frédéric</creatorcontrib><creatorcontrib>Luca, Francesca</creatorcontrib><creatorcontrib>Sajantila, Antti</creatorcontrib><creatorcontrib>Behar, Doron M.</creatorcontrib><creatorcontrib>Semino, Ornella</creatorcontrib><creatorcontrib>Sakuntabhai, Anavaj</creatorcontrib><creatorcontrib>Guiso, Nicole</creatorcontrib><creatorcontrib>Gicquel, Brigitte</creatorcontrib><creatorcontrib>McElreavey, Ken</creatorcontrib><creatorcontrib>Harding, Rosalind M.</creatorcontrib><creatorcontrib>Heyer, Evelyne</creatorcontrib><creatorcontrib>Quintana-Murci, Lluís</creatorcontrib><title>Deciphering the Ancient and Complex Evolutionary History of Human Arylamine N-Acetyltransferase Genes</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>The human N-acetyltransferase genes NAT1 and NAT2 encode two phase-II enzymes that metabolize various drugs and carcinogens. Functional variability at these genes has been associated with adverse drug reactions and cancer susceptibility. Mutations in NAT2 leading to the so-called slow-acetylation phenotype reach high frequencies worldwide, which questions the significance of altered acetylation in human adaptation. To investigate the role of population history and natural selection in shaping NATs variation, we characterized genetic diversity through the resequencing and genotyping of NAT1, NAT2, and the pseudogene NATP in a collection of 13 different populations with distinct ethnic backgrounds and demographic pasts. This combined study design allowed us to define a detailed map of linkage disequilibrium of the NATs region as well as to perform a number of sequence-based neutrality tests and the long-range haplotype (LRH) test. Our data revealed distinctive patterns of variability for the two genes: the reduced diversity observed at NAT1 is consistent with the action of purifying selection, whereas NAT2 functional variation contributes to high levels of diversity. In addition, the LRH test identified a particular NAT2 haplotype ( NAT2*5B) under recent positive selection in western/central Eurasians. This haplotype harbors the mutation 341T→C and encodes the “slowest-acetylator” NAT2 enzyme, suggesting a general selective advantage for the slow-acetylator phenotype. Interestingly, the NAT2*5B haplotype, which seems to have conferred a selective advantage during the past ∼6,500 years, exhibits today the strongest association with susceptibility to bladder cancer and adverse drug reactions. On the whole, the patterns observed for NAT2 well illustrate how geographically and temporally fluctuating xenobiotic environments may have influenced not only our genome variability but also our present-day susceptibility to disease.</description><subject>Acetylation</subject><subject>Adaptation, Physiological</subject><subject>Adaptation, Physiological - genetics</subject><subject>Amino Acid Sequence</subject><subject>Arylamine N-Acetyltransferase</subject><subject>Arylamine N-Acetyltransferase - genetics</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>Drugs</subject><subject>Environment and Society</subject><subject>Environmental Sciences</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Female</subject><subject>General aspects. Genetic counseling</subject><subject>Genes</subject><subject>Genetic Variation</subject><subject>Geography</subject><subject>Global Changes</subject><subject>Haplotypes</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Isoenzymes</subject><subject>Isoenzymes - genetics</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Male</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Population</subject><subject>Population - genetics</subject><subject>Variation (Genetics)</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU-P0zAQxSMEYssCHwFZSHAL-E_ixBekqCxbpAoucLYmzmTrVWIHO6not8dVKwo9zcE_vzfzXpa9ZvQDo7X8WFIqWfEkW7FSVLmUtHyarSilPFdcVTfZixgfKWWspuJ5dsNkwaRQapXhZzR22mGw7oHMOySNMxbdTMB1ZO3HacDf5G7vh2W23kE4kI2Ns0_T92SzjOBIEw4DjNYh-ZY3BufDMAdwsccAEck9Oowvs2c9DBFfnedt9vPL3Y_1Jt9-v_-6bra5KQWbc6a61rCC17JvOaoKFXCuZCVAdNCqtu9b7BmUtAAmoe2xLRQrqAKkbSeAi9vs00l3WtoRO5MOCTDoKdgxra49WP3_i7M7_eD3momaJtskkJ8EdlffNs1WTxBnXIJOOUoluNyzxL8_Gwb_a8E469FGg8MADv0SNat4UYryKPz2Cnz0S3ApDM2ZkrSuRX1RM8HHGLD_uwKj-lizPtWcwDf_3nnBzr0m4N0ZgGhg6FMhxsYLV5W8LtkxMHriMLWytxh0PNZvsLMBzaw7b6-9_wAJkMBU</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Patin, Etienne</creator><creator>Barreiro, Luis B.</creator><creator>Sabeti, Pardis C.</creator><creator>Austerlitz, Frédéric</creator><creator>Luca, Francesca</creator><creator>Sajantila, Antti</creator><creator>Behar, Doron M.</creator><creator>Semino, Ornella</creator><creator>Sakuntabhai, Anavaj</creator><creator>Guiso, Nicole</creator><creator>Gicquel, Brigitte</creator><creator>McElreavey, Ken</creator><creator>Harding, Rosalind M.</creator><creator>Heyer, Evelyne</creator><creator>Quintana-Murci, Lluís</creator><general>Elsevier Inc</general><general>University of Chicago Press</general><general>Cell Press</general><general>Elsevier (Cell Press)</general><general>The American Society of Human Genetics</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9099-6937</orcidid><orcidid>https://orcid.org/0000-0003-2429-6320</orcidid><orcidid>https://orcid.org/0000-0001-8031-455X</orcidid><orcidid>https://orcid.org/0000-0001-6582-1801</orcidid><orcidid>https://orcid.org/0000-0002-0266-3196</orcidid><orcidid>https://orcid.org/0000-0002-9911-4459</orcidid></search><sort><creationdate>20060301</creationdate><title>Deciphering the Ancient and Complex Evolutionary History of Human Arylamine N-Acetyltransferase Genes</title><author>Patin, Etienne ; Barreiro, Luis B. ; Sabeti, Pardis C. ; Austerlitz, Frédéric ; Luca, Francesca ; Sajantila, Antti ; Behar, Doron M. ; Semino, Ornella ; Sakuntabhai, Anavaj ; Guiso, Nicole ; Gicquel, Brigitte ; McElreavey, Ken ; Harding, Rosalind M. ; Heyer, Evelyne ; Quintana-Murci, Lluís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-19dbc14286fb2e97e9a229673a3dab9bffbef1a504a16abfeb491409ae0bd3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acetylation</topic><topic>Adaptation, Physiological</topic><topic>Adaptation, Physiological - genetics</topic><topic>Amino Acid Sequence</topic><topic>Arylamine N-Acetyltransferase</topic><topic>Arylamine N-Acetyltransferase - genetics</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>Drugs</topic><topic>Environment and Society</topic><topic>Environmental Sciences</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Female</topic><topic>General aspects. Genetic counseling</topic><topic>Genes</topic><topic>Genetic Variation</topic><topic>Geography</topic><topic>Global Changes</topic><topic>Haplotypes</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Isoenzymes</topic><topic>Isoenzymes - genetics</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Male</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Population</topic><topic>Population - genetics</topic><topic>Variation (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patin, Etienne</creatorcontrib><creatorcontrib>Barreiro, Luis B.</creatorcontrib><creatorcontrib>Sabeti, Pardis C.</creatorcontrib><creatorcontrib>Austerlitz, Frédéric</creatorcontrib><creatorcontrib>Luca, Francesca</creatorcontrib><creatorcontrib>Sajantila, Antti</creatorcontrib><creatorcontrib>Behar, Doron M.</creatorcontrib><creatorcontrib>Semino, Ornella</creatorcontrib><creatorcontrib>Sakuntabhai, Anavaj</creatorcontrib><creatorcontrib>Guiso, Nicole</creatorcontrib><creatorcontrib>Gicquel, Brigitte</creatorcontrib><creatorcontrib>McElreavey, Ken</creatorcontrib><creatorcontrib>Harding, Rosalind M.</creatorcontrib><creatorcontrib>Heyer, Evelyne</creatorcontrib><creatorcontrib>Quintana-Murci, Lluís</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patin, Etienne</au><au>Barreiro, Luis B.</au><au>Sabeti, Pardis C.</au><au>Austerlitz, Frédéric</au><au>Luca, Francesca</au><au>Sajantila, Antti</au><au>Behar, Doron M.</au><au>Semino, Ornella</au><au>Sakuntabhai, Anavaj</au><au>Guiso, Nicole</au><au>Gicquel, Brigitte</au><au>McElreavey, Ken</au><au>Harding, Rosalind M.</au><au>Heyer, Evelyne</au><au>Quintana-Murci, Lluís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the Ancient and Complex Evolutionary History of Human Arylamine N-Acetyltransferase Genes</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>78</volume><issue>3</issue><spage>423</spage><epage>436</epage><pages>423-436</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><coden>AJHGAG</coden><abstract>The human N-acetyltransferase genes NAT1 and NAT2 encode two phase-II enzymes that metabolize various drugs and carcinogens. Functional variability at these genes has been associated with adverse drug reactions and cancer susceptibility. Mutations in NAT2 leading to the so-called slow-acetylation phenotype reach high frequencies worldwide, which questions the significance of altered acetylation in human adaptation. To investigate the role of population history and natural selection in shaping NATs variation, we characterized genetic diversity through the resequencing and genotyping of NAT1, NAT2, and the pseudogene NATP in a collection of 13 different populations with distinct ethnic backgrounds and demographic pasts. This combined study design allowed us to define a detailed map of linkage disequilibrium of the NATs region as well as to perform a number of sequence-based neutrality tests and the long-range haplotype (LRH) test. Our data revealed distinctive patterns of variability for the two genes: the reduced diversity observed at NAT1 is consistent with the action of purifying selection, whereas NAT2 functional variation contributes to high levels of diversity. In addition, the LRH test identified a particular NAT2 haplotype ( NAT2*5B) under recent positive selection in western/central Eurasians. This haplotype harbors the mutation 341T→C and encodes the “slowest-acetylator” NAT2 enzyme, suggesting a general selective advantage for the slow-acetylator phenotype. Interestingly, the NAT2*5B haplotype, which seems to have conferred a selective advantage during the past ∼6,500 years, exhibits today the strongest association with susceptibility to bladder cancer and adverse drug reactions. On the whole, the patterns observed for NAT2 well illustrate how geographically and temporally fluctuating xenobiotic environments may have influenced not only our genome variability but also our present-day susceptibility to disease.</abstract><cop>Chicago, IL</cop><pub>Elsevier Inc</pub><pmid>16416399</pmid><doi>10.1086/500614</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9099-6937</orcidid><orcidid>https://orcid.org/0000-0003-2429-6320</orcidid><orcidid>https://orcid.org/0000-0001-8031-455X</orcidid><orcidid>https://orcid.org/0000-0001-6582-1801</orcidid><orcidid>https://orcid.org/0000-0002-0266-3196</orcidid><orcidid>https://orcid.org/0000-0002-9911-4459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2006-03, Vol.78 (3), p.423-436
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1380286
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Acetylation
Adaptation, Physiological
Adaptation, Physiological - genetics
Amino Acid Sequence
Arylamine N-Acetyltransferase
Arylamine N-Acetyltransferase - genetics
Biological and medical sciences
Cancer
Drugs
Environment and Society
Environmental Sciences
Enzymes
Evolution
Evolution, Molecular
Female
General aspects. Genetic counseling
Genes
Genetic Variation
Geography
Global Changes
Haplotypes
Human health and pathology
Humans
Infectious diseases
Isoenzymes
Isoenzymes - genetics
Life Sciences
Linkage Disequilibrium
Male
Medical genetics
Medical sciences
Molecular Sequence Data
Mutation
Phenotype
Population
Population - genetics
Variation (Genetics)
title Deciphering the Ancient and Complex Evolutionary History of Human Arylamine N-Acetyltransferase Genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20Ancient%20and%20Complex%20Evolutionary%20History%20of%20Human%20Arylamine%20N-Acetyltransferase%20Genes&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Patin,%20Etienne&rft.date=2006-03-01&rft.volume=78&rft.issue=3&rft.spage=423&rft.epage=436&rft.pages=423-436&rft.issn=0002-9297&rft.eissn=1537-6605&rft.coden=AJHGAG&rft_id=info:doi/10.1086/500614&rft_dat=%3Cproquest_pubme%3E1004390891%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219608838&rft_id=info:pmid/16416399&rft_els_id=S0002929707623829&rfr_iscdi=true