Mutations in genes of Saccharomyces cerevisiae encoding pre‐mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint
Previous work has identified a group of genes whose products play important roles in two seemingly unrelated processes: cell cycle progression and splicing. The products of these genes show a network of physical and genetic interactions suggestive of the existence of a protein complex, the cell cycl...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2002-10, Vol.30 (20), p.4361-4370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4370 |
---|---|
container_issue | 20 |
container_start_page | 4361 |
container_title | Nucleic acids research |
container_volume | 30 |
creator | Dahan, Orna Kupiec, Martin |
description | Previous work has identified a group of genes whose products play important roles in two seemingly unrelated processes: cell cycle progression and splicing. The products of these genes show a network of physical and genetic interactions suggestive of the existence of a protein complex, the cell cycle and splicing complex (CSC). Here we analyze the genetic interactions between ISY1, SYF2 and NTC20, three non‐essential components of the CSC. We show that mutations in ISY1 cause lethality in the absence of Ntc20p, and that the double mutant isy1Δ syf2Δ shows a temperature‐dependent cell cycle arrest. This arrest is due to lower levels of α‐tubulin, a protein encoded by TUB1 and TUB3, two intron‐containing genes. We show that the low levels of α‐tubulin in isy1Δ syf2Δ trigger activation of the spindle checkpoint, causing cell cycle arrest. Thus, our results have uncovered an unexpected role for pre‐mRNA splicing in the maintenance of the fidelity of chromosome transmission during cell division. |
doi_str_mv | 10.1093/nar/gkf563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_137127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72187775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-bdda25cd9502ab21c64141c3c303d6563253f84d1e3a9ee7c5603bf54cd859413</originalsourceid><addsrcrecordid>eNqFkstu1DAUhiMEotPChgdAFgsWlUJ9zWXBolRAQR1AFCTUjeVxThJ3EjvYyYjZ8QgseT6eBIcZlcuG1ZHO-c7lP_qT5AHBTwgu2YlV_qRZ1yJjt5IFYRlNeZnR28kCMyxSgnlxkByGcI0x4UTwu8kBoazgoqCL5PtyGtVonA3IWNSAhYBcjS6V1q3yrt_qmNDgYWOCUYDAalcZ26DBw4-v3_r3b05RGDqj51yt9Oh85NUUIHZ1HdJb3QFS3kMY0dh6NzUtipjZ_No67xpbiCOMrSKoW9DrwRk73kvu1KoLcH8fj5KPL55_ODtPL96-fHV2epFqnpVjuqoqRYWuSoGpWlGiMx5FaqYZZlUWX0IFqwteEWCqBMi1yDBb1YLrqhAlJ-woebqbO0yrHioNdvSqk4M3vfJb6ZSRf1esaWXjNpKwnNA89j_e93v3eYoqZW_CLF1ZcFOQOSVFnufivyApBGOUzBc9-ge8dpO38QmSYpwJVnIWoeMdpL0LwUN9czHBcnaFjK6QO1dE-OGfGn-jextEIN0BJozw5aau_FpmOcuFPP90JS-X5bOr1-8KuWQ_AWPxx_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200653943</pqid></control><display><type>article</type><title>Mutations in genes of Saccharomyces cerevisiae encoding pre‐mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dahan, Orna ; Kupiec, Martin</creator><creatorcontrib>Dahan, Orna ; Kupiec, Martin</creatorcontrib><description>Previous work has identified a group of genes whose products play important roles in two seemingly unrelated processes: cell cycle progression and splicing. The products of these genes show a network of physical and genetic interactions suggestive of the existence of a protein complex, the cell cycle and splicing complex (CSC). Here we analyze the genetic interactions between ISY1, SYF2 and NTC20, three non‐essential components of the CSC. We show that mutations in ISY1 cause lethality in the absence of Ntc20p, and that the double mutant isy1Δ syf2Δ shows a temperature‐dependent cell cycle arrest. This arrest is due to lower levels of α‐tubulin, a protein encoded by TUB1 and TUB3, two intron‐containing genes. We show that the low levels of α‐tubulin in isy1Δ syf2Δ trigger activation of the spindle checkpoint, causing cell cycle arrest. Thus, our results have uncovered an unexpected role for pre‐mRNA splicing in the maintenance of the fidelity of chromosome transmission during cell division.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkf563</identifier><identifier>PMID: 12384582</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biological Transport ; Cell Cycle ; Cell Cycle Proteins - genetics ; Cell Nucleus - metabolism ; DNA-Binding Proteins - genetics ; Genes, Fungal ; Microtubules - drug effects ; Mutation ; Nocodazole - pharmacology ; Phenotype ; RNA Precursors - metabolism ; RNA Splicing ; RNA Splicing Factors ; RNA, Fungal - metabolism ; RNA-Binding Proteins - genetics ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - physiology ; Spindle Apparatus - metabolism ; Spindle Apparatus - ultrastructure ; Temperature ; Tubulin - biosynthesis ; Tubulin - genetics</subject><ispartof>Nucleic acids research, 2002-10, Vol.30 (20), p.4361-4370</ispartof><rights>Copyright Oxford University Press(England) Oct 15, 2002</rights><rights>Copyright © 2002 Oxford University Press 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-bdda25cd9502ab21c64141c3c303d6563253f84d1e3a9ee7c5603bf54cd859413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC137127/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC137127/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12384582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahan, Orna</creatorcontrib><creatorcontrib>Kupiec, Martin</creatorcontrib><title>Mutations in genes of Saccharomyces cerevisiae encoding pre‐mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Previous work has identified a group of genes whose products play important roles in two seemingly unrelated processes: cell cycle progression and splicing. The products of these genes show a network of physical and genetic interactions suggestive of the existence of a protein complex, the cell cycle and splicing complex (CSC). Here we analyze the genetic interactions between ISY1, SYF2 and NTC20, three non‐essential components of the CSC. We show that mutations in ISY1 cause lethality in the absence of Ntc20p, and that the double mutant isy1Δ syf2Δ shows a temperature‐dependent cell cycle arrest. This arrest is due to lower levels of α‐tubulin, a protein encoded by TUB1 and TUB3, two intron‐containing genes. We show that the low levels of α‐tubulin in isy1Δ syf2Δ trigger activation of the spindle checkpoint, causing cell cycle arrest. Thus, our results have uncovered an unexpected role for pre‐mRNA splicing in the maintenance of the fidelity of chromosome transmission during cell division.</description><subject>Biological Transport</subject><subject>Cell Cycle</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Genes, Fungal</subject><subject>Microtubules - drug effects</subject><subject>Mutation</subject><subject>Nocodazole - pharmacology</subject><subject>Phenotype</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Splicing</subject><subject>RNA Splicing Factors</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Spindle Apparatus - metabolism</subject><subject>Spindle Apparatus - ultrastructure</subject><subject>Temperature</subject><subject>Tubulin - biosynthesis</subject><subject>Tubulin - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkstu1DAUhiMEotPChgdAFgsWlUJ9zWXBolRAQR1AFCTUjeVxThJ3EjvYyYjZ8QgseT6eBIcZlcuG1ZHO-c7lP_qT5AHBTwgu2YlV_qRZ1yJjt5IFYRlNeZnR28kCMyxSgnlxkByGcI0x4UTwu8kBoazgoqCL5PtyGtVonA3IWNSAhYBcjS6V1q3yrt_qmNDgYWOCUYDAalcZ26DBw4-v3_r3b05RGDqj51yt9Oh85NUUIHZ1HdJb3QFS3kMY0dh6NzUtipjZ_No67xpbiCOMrSKoW9DrwRk73kvu1KoLcH8fj5KPL55_ODtPL96-fHV2epFqnpVjuqoqRYWuSoGpWlGiMx5FaqYZZlUWX0IFqwteEWCqBMi1yDBb1YLrqhAlJ-woebqbO0yrHioNdvSqk4M3vfJb6ZSRf1esaWXjNpKwnNA89j_e93v3eYoqZW_CLF1ZcFOQOSVFnufivyApBGOUzBc9-ge8dpO38QmSYpwJVnIWoeMdpL0LwUN9czHBcnaFjK6QO1dE-OGfGn-jextEIN0BJozw5aau_FpmOcuFPP90JS-X5bOr1-8KuWQ_AWPxx_Q</recordid><startdate>20021015</startdate><enddate>20021015</enddate><creator>Dahan, Orna</creator><creator>Kupiec, Martin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021015</creationdate><title>Mutations in genes of Saccharomyces cerevisiae encoding pre‐mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint</title><author>Dahan, Orna ; Kupiec, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-bdda25cd9502ab21c64141c3c303d6563253f84d1e3a9ee7c5603bf54cd859413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Biological Transport</topic><topic>Cell Cycle</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Genes, Fungal</topic><topic>Microtubules - drug effects</topic><topic>Mutation</topic><topic>Nocodazole - pharmacology</topic><topic>Phenotype</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Splicing</topic><topic>RNA Splicing Factors</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Spindle Apparatus - metabolism</topic><topic>Spindle Apparatus - ultrastructure</topic><topic>Temperature</topic><topic>Tubulin - biosynthesis</topic><topic>Tubulin - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahan, Orna</creatorcontrib><creatorcontrib>Kupiec, Martin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahan, Orna</au><au>Kupiec, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in genes of Saccharomyces cerevisiae encoding pre‐mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2002-10-15</date><risdate>2002</risdate><volume>30</volume><issue>20</issue><spage>4361</spage><epage>4370</epage><pages>4361-4370</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Previous work has identified a group of genes whose products play important roles in two seemingly unrelated processes: cell cycle progression and splicing. The products of these genes show a network of physical and genetic interactions suggestive of the existence of a protein complex, the cell cycle and splicing complex (CSC). Here we analyze the genetic interactions between ISY1, SYF2 and NTC20, three non‐essential components of the CSC. We show that mutations in ISY1 cause lethality in the absence of Ntc20p, and that the double mutant isy1Δ syf2Δ shows a temperature‐dependent cell cycle arrest. This arrest is due to lower levels of α‐tubulin, a protein encoded by TUB1 and TUB3, two intron‐containing genes. We show that the low levels of α‐tubulin in isy1Δ syf2Δ trigger activation of the spindle checkpoint, causing cell cycle arrest. Thus, our results have uncovered an unexpected role for pre‐mRNA splicing in the maintenance of the fidelity of chromosome transmission during cell division.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12384582</pmid><doi>10.1093/nar/gkf563</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2002-10, Vol.30 (20), p.4361-4370 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_137127 |
source | MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biological Transport Cell Cycle Cell Cycle Proteins - genetics Cell Nucleus - metabolism DNA-Binding Proteins - genetics Genes, Fungal Microtubules - drug effects Mutation Nocodazole - pharmacology Phenotype RNA Precursors - metabolism RNA Splicing RNA Splicing Factors RNA, Fungal - metabolism RNA-Binding Proteins - genetics Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - physiology Spindle Apparatus - metabolism Spindle Apparatus - ultrastructure Temperature Tubulin - biosynthesis Tubulin - genetics |
title | Mutations in genes of Saccharomyces cerevisiae encoding pre‐mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20genes%20of%20Saccharomyces%20cerevisiae%20encoding%20pre%E2%80%90mRNA%20splicing%20factors%20cause%20cell%20cycle%20arrest%20through%20activation%20of%20the%20spindle%20checkpoint&rft.jtitle=Nucleic%20acids%20research&rft.au=Dahan,%20Orna&rft.date=2002-10-15&rft.volume=30&rft.issue=20&rft.spage=4361&rft.epage=4370&rft.pages=4361-4370&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkf563&rft_dat=%3Cproquest_pubme%3E72187775%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200653943&rft_id=info:pmid/12384582&rfr_iscdi=true |