Aqueous Diffusion Pathways as a Part of the Ventricular Cell Ultrastructure
The physical organization of the ventricular myocyte includes barriers for the movement of objects of varying dimensions ranging from ions to solid particles. There are two kinds of diffusion in the cell: lateral (in membranes) and aqueous. Here we examine the size constraints of aqueous diffusion p...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2006-02, Vol.90 (3), p.1107-1119 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1119 |
---|---|
container_issue | 3 |
container_start_page | 1107 |
container_title | Biophysical journal |
container_volume | 90 |
creator | Parfenov, A.S. Salnikov, V. Lederer, W.J. Lukyánenko, V. |
description | The physical organization of the ventricular myocyte includes barriers for the movement of objects of varying dimensions ranging from ions to solid particles. There are two kinds of diffusion in the cell: lateral (in membranes) and aqueous. Here we examine the size constraints of aqueous diffusion pathways and discuss their impact on cellular physiology. Calibrated gold nanoparticles were used to probe the accessibility of the entire transverse-axial tubular system (TATS), the sarcoplasm, and intracellular structures. The TATS tubules, although up to 300nm in diameter, permitted only particles ≤11nm to enter. When calibrated nanoparticles were added to permeabilized ventricular cells, particles ≤11nm were found in the sarcoplasm. The distribution of nanoparticles in the cells allowed us to conclude that 1), the TATS and the sarcoplasm are accessible only for particles ≤11nm; 2), the gaps between T-tubules and junctional sarcoplasmic reticulum (jSR), jSR and mitochondria, and intermitochondrial contacts are inaccessible for particles with physical size >3nm; 3), the mitochondrial voltage-dependent anion channel and the nuclear pore complex in ventricular cells could not be penetrated by particles ≥6nm; and 4), there is a difference in size clearance between transversal and longitudinal sarcoplasmic diffusional pathways. |
doi_str_mv | 10.1529/biophysj.105.071787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349506722998</els_id><sourcerecordid>70680033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-2aae616459738501bd5efbacbbd689cf9f34fdf8b3314ed9bbef602eb179372c3</originalsourceid><addsrcrecordid>eNp9UV2LEzEUDaK43eovEGTwwbep-Zh8zIPCUl0VF_TB9TUkmRubMp3UJLPSf29K6-eDEAi5Offcc-5B6AnBK8Jp_8KGuN8c8nZFMF9hSaSS99CC8I62GCtxHy0wxqJlXc8v0GXOW4wJ5Zg8RBdEUNVRoRbow9W3GeKcm9fB-zmHODWfTNl8N4fcmHrqK5Um-qZsoPkCU0nBzaNJzRrGsbkdSzK5pNmVOcEj9MCbMcPj871Et9dvPq_ftTcf375fX920rlNdaakxIIjoeC-ZqnrswMFb46wdhOqd7z3r_OCVZYx0MPTWgheYgiWyZ5I6tkSvTrz72e5gcEdVZtT7FHYmHXQ0Qf_9M4WN_hrvNGFC4jp1iZ6fCVKs9nPRu5BdNWSm4y60xEJhzFgFPvsHuI1zmqo5TQmXmDB2ZGMnkEsx5wT-lxKC9TEp_TOpWuD6lFTtevqnid8952gq4OUJAHWVdwGSzi7A5GAICVzRQwz_HfADchOoaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215701337</pqid></control><display><type>article</type><title>Aqueous Diffusion Pathways as a Part of the Ventricular Cell Ultrastructure</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Parfenov, A.S. ; Salnikov, V. ; Lederer, W.J. ; Lukyánenko, V.</creator><creatorcontrib>Parfenov, A.S. ; Salnikov, V. ; Lederer, W.J. ; Lukyánenko, V.</creatorcontrib><description>The physical organization of the ventricular myocyte includes barriers for the movement of objects of varying dimensions ranging from ions to solid particles. There are two kinds of diffusion in the cell: lateral (in membranes) and aqueous. Here we examine the size constraints of aqueous diffusion pathways and discuss their impact on cellular physiology. Calibrated gold nanoparticles were used to probe the accessibility of the entire transverse-axial tubular system (TATS), the sarcoplasm, and intracellular structures. The TATS tubules, although up to 300nm in diameter, permitted only particles ≤11nm to enter. When calibrated nanoparticles were added to permeabilized ventricular cells, particles ≤11nm were found in the sarcoplasm. The distribution of nanoparticles in the cells allowed us to conclude that 1), the TATS and the sarcoplasm are accessible only for particles ≤11nm; 2), the gaps between T-tubules and junctional sarcoplasmic reticulum (jSR), jSR and mitochondria, and intermitochondrial contacts are inaccessible for particles with physical size >3nm; 3), the mitochondrial voltage-dependent anion channel and the nuclear pore complex in ventricular cells could not be penetrated by particles ≥6nm; and 4), there is a difference in size clearance between transversal and longitudinal sarcoplasmic diffusional pathways.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.071787</identifier><identifier>PMID: 16284268</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysics - methods ; Calcium ; Calcium - metabolism ; Calibration ; Cations ; Cells ; Cells, Cultured ; Cytochalasin D - pharmacology ; Cytoskeleton - metabolism ; Diffusion ; Heart Ventricles - pathology ; Light ; Male ; Microscopy, Confocal ; Microscopy, Electron ; Mitochondria - metabolism ; Muscular system ; Nanostructures ; Nanotechnology - methods ; Oocytes - metabolism ; Other ; Proteins ; Rats ; Rats, Sprague-Dawley ; Sarcolemma - metabolism ; Sarcoplasmic Reticulum - metabolism ; Silver Staining</subject><ispartof>Biophysical journal, 2006-02, Vol.90 (3), p.1107-1119</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Feb 1, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-2aae616459738501bd5efbacbbd689cf9f34fdf8b3314ed9bbef602eb179372c3</citedby><cites>FETCH-LOGICAL-c484t-2aae616459738501bd5efbacbbd689cf9f34fdf8b3314ed9bbef602eb179372c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367097/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349506722998$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16284268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parfenov, A.S.</creatorcontrib><creatorcontrib>Salnikov, V.</creatorcontrib><creatorcontrib>Lederer, W.J.</creatorcontrib><creatorcontrib>Lukyánenko, V.</creatorcontrib><title>Aqueous Diffusion Pathways as a Part of the Ventricular Cell Ultrastructure</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The physical organization of the ventricular myocyte includes barriers for the movement of objects of varying dimensions ranging from ions to solid particles. There are two kinds of diffusion in the cell: lateral (in membranes) and aqueous. Here we examine the size constraints of aqueous diffusion pathways and discuss their impact on cellular physiology. Calibrated gold nanoparticles were used to probe the accessibility of the entire transverse-axial tubular system (TATS), the sarcoplasm, and intracellular structures. The TATS tubules, although up to 300nm in diameter, permitted only particles ≤11nm to enter. When calibrated nanoparticles were added to permeabilized ventricular cells, particles ≤11nm were found in the sarcoplasm. The distribution of nanoparticles in the cells allowed us to conclude that 1), the TATS and the sarcoplasm are accessible only for particles ≤11nm; 2), the gaps between T-tubules and junctional sarcoplasmic reticulum (jSR), jSR and mitochondria, and intermitochondrial contacts are inaccessible for particles with physical size >3nm; 3), the mitochondrial voltage-dependent anion channel and the nuclear pore complex in ventricular cells could not be penetrated by particles ≥6nm; and 4), there is a difference in size clearance between transversal and longitudinal sarcoplasmic diffusional pathways.</description><subject>Animals</subject><subject>Biophysics - methods</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calibration</subject><subject>Cations</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Cytochalasin D - pharmacology</subject><subject>Cytoskeleton - metabolism</subject><subject>Diffusion</subject><subject>Heart Ventricles - pathology</subject><subject>Light</subject><subject>Male</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron</subject><subject>Mitochondria - metabolism</subject><subject>Muscular system</subject><subject>Nanostructures</subject><subject>Nanotechnology - methods</subject><subject>Oocytes - metabolism</subject><subject>Other</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sarcolemma - metabolism</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Silver Staining</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UV2LEzEUDaK43eovEGTwwbep-Zh8zIPCUl0VF_TB9TUkmRubMp3UJLPSf29K6-eDEAi5Offcc-5B6AnBK8Jp_8KGuN8c8nZFMF9hSaSS99CC8I62GCtxHy0wxqJlXc8v0GXOW4wJ5Zg8RBdEUNVRoRbow9W3GeKcm9fB-zmHODWfTNl8N4fcmHrqK5Um-qZsoPkCU0nBzaNJzRrGsbkdSzK5pNmVOcEj9MCbMcPj871Et9dvPq_ftTcf375fX920rlNdaakxIIjoeC-ZqnrswMFb46wdhOqd7z3r_OCVZYx0MPTWgheYgiWyZ5I6tkSvTrz72e5gcEdVZtT7FHYmHXQ0Qf_9M4WN_hrvNGFC4jp1iZ6fCVKs9nPRu5BdNWSm4y60xEJhzFgFPvsHuI1zmqo5TQmXmDB2ZGMnkEsx5wT-lxKC9TEp_TOpWuD6lFTtevqnid8952gq4OUJAHWVdwGSzi7A5GAICVzRQwz_HfADchOoaw</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Parfenov, A.S.</creator><creator>Salnikov, V.</creator><creator>Lederer, W.J.</creator><creator>Lukyánenko, V.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060201</creationdate><title>Aqueous Diffusion Pathways as a Part of the Ventricular Cell Ultrastructure</title><author>Parfenov, A.S. ; Salnikov, V. ; Lederer, W.J. ; Lukyánenko, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-2aae616459738501bd5efbacbbd689cf9f34fdf8b3314ed9bbef602eb179372c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biophysics - methods</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calibration</topic><topic>Cations</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Cytochalasin D - pharmacology</topic><topic>Cytoskeleton - metabolism</topic><topic>Diffusion</topic><topic>Heart Ventricles - pathology</topic><topic>Light</topic><topic>Male</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron</topic><topic>Mitochondria - metabolism</topic><topic>Muscular system</topic><topic>Nanostructures</topic><topic>Nanotechnology - methods</topic><topic>Oocytes - metabolism</topic><topic>Other</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sarcolemma - metabolism</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Silver Staining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parfenov, A.S.</creatorcontrib><creatorcontrib>Salnikov, V.</creatorcontrib><creatorcontrib>Lederer, W.J.</creatorcontrib><creatorcontrib>Lukyánenko, V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parfenov, A.S.</au><au>Salnikov, V.</au><au>Lederer, W.J.</au><au>Lukyánenko, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous Diffusion Pathways as a Part of the Ventricular Cell Ultrastructure</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>90</volume><issue>3</issue><spage>1107</spage><epage>1119</epage><pages>1107-1119</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The physical organization of the ventricular myocyte includes barriers for the movement of objects of varying dimensions ranging from ions to solid particles. There are two kinds of diffusion in the cell: lateral (in membranes) and aqueous. Here we examine the size constraints of aqueous diffusion pathways and discuss their impact on cellular physiology. Calibrated gold nanoparticles were used to probe the accessibility of the entire transverse-axial tubular system (TATS), the sarcoplasm, and intracellular structures. The TATS tubules, although up to 300nm in diameter, permitted only particles ≤11nm to enter. When calibrated nanoparticles were added to permeabilized ventricular cells, particles ≤11nm were found in the sarcoplasm. The distribution of nanoparticles in the cells allowed us to conclude that 1), the TATS and the sarcoplasm are accessible only for particles ≤11nm; 2), the gaps between T-tubules and junctional sarcoplasmic reticulum (jSR), jSR and mitochondria, and intermitochondrial contacts are inaccessible for particles with physical size >3nm; 3), the mitochondrial voltage-dependent anion channel and the nuclear pore complex in ventricular cells could not be penetrated by particles ≥6nm; and 4), there is a difference in size clearance between transversal and longitudinal sarcoplasmic diffusional pathways.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16284268</pmid><doi>10.1529/biophysj.105.071787</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2006-02, Vol.90 (3), p.1107-1119 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367097 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biophysics - methods Calcium Calcium - metabolism Calibration Cations Cells Cells, Cultured Cytochalasin D - pharmacology Cytoskeleton - metabolism Diffusion Heart Ventricles - pathology Light Male Microscopy, Confocal Microscopy, Electron Mitochondria - metabolism Muscular system Nanostructures Nanotechnology - methods Oocytes - metabolism Other Proteins Rats Rats, Sprague-Dawley Sarcolemma - metabolism Sarcoplasmic Reticulum - metabolism Silver Staining |
title | Aqueous Diffusion Pathways as a Part of the Ventricular Cell Ultrastructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20Diffusion%20Pathways%20as%20a%20Part%20of%20the%20Ventricular%20Cell%20Ultrastructure&rft.jtitle=Biophysical%20journal&rft.au=Parfenov,%20A.S.&rft.date=2006-02-01&rft.volume=90&rft.issue=3&rft.spage=1107&rft.epage=1119&rft.pages=1107-1119&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.071787&rft_dat=%3Cproquest_pubme%3E70680033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215701337&rft_id=info:pmid/16284268&rft_els_id=S0006349506722998&rfr_iscdi=true |