Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles
We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrate...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2006-01, Vol.90 (2), p.619-627 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 627 |
---|---|
container_issue | 2 |
container_start_page | 619 |
container_title | Biophysical journal |
container_volume | 90 |
creator | Zharov, Vladimir P. Mercer, Kelly E. Galitovskaya, Elena N. Smeltzer, Mark S. |
description | We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium
Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570
nm, 12
ns, 0.1–5
J/cm
2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing. |
doi_str_mv | 10.1529/biophysj.105.061895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349506722408</els_id><sourcerecordid>67598127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-f9cc6e080d9b601509b8adfc3b6b8717cadfdea0345b816e85021ba5ba9119bc3</originalsourceid><addsrcrecordid>eNp9kV-P1CAUxYnRuOPqJzAxjQ--dbyUQsuDJrrR1bhRE9dnAvR2yqRTRqBj9tvLTse_Dz4Bh3N_l8sh5DGFNeWVfG6c3w83cbumwNcgaCv5HbKivK5KgFbcJSsAECWrJT8jD2LcAtCKA71PzqiomGQMViR9HnzyacCw02PxUU_Hvd7jnJyNhZ66o9g5vZl8PGq9D8UXHNEmd8DigxtHN20K3xevtU0YnC6uddhgwq747tJQXPpxgex1yIAR40Nyr9djxEen9Zx8ffvm-uJdefXp8v3Fq6vS1m2dyl5aKxBa6KQRQDlI0-qut8wI0za0sfnQoQZWc9NSgS2HihrNjZaUSmPZOXm5cPez2WFncUpBj2of3E6HG-W1U3_fTG5QG39QlIkGhMiAZydA8N9mjEntXLQ4jnpCP0clGi5bWjXZ-PQf49bPYcrDqYpyIVsGtzS2mGzwMQbsf72EgrqNVP2MNAtcLZHmqid_DvG75pRhNrxYDJi_8uAwqGgdThY7F3JIqvPuvw1-AIYsuB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215698306</pqid></control><display><type>article</type><title>Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Zharov, Vladimir P. ; Mercer, Kelly E. ; Galitovskaya, Elena N. ; Smeltzer, Mark S.</creator><creatorcontrib>Zharov, Vladimir P. ; Mercer, Kelly E. ; Galitovskaya, Elena N. ; Smeltzer, Mark S.</creatorcontrib><description>We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium
Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570
nm, 12
ns, 0.1–5
J/cm
2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.061895</identifier><identifier>PMID: 16239330</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Effects ; Gold ; Gold - chemistry ; Gram-positive bacteria ; Hot Temperature ; Immunoglobulins ; Lasers ; Low-Level Light Therapy - methods ; Medical imaging ; Medical research ; Microscopy ; Microscopy, Electron ; Microscopy, Electron, Transmission ; Microscopy, Phase-Contrast ; Nanoparticles ; Nanostructures - chemistry ; Nanotechnology - methods ; Phototherapy - methods ; Protein Transport ; Proteins ; Spectrophotometry ; Spectroscopy, Imaging, Other Techniques ; Spectrum Analysis, Raman ; Staphylococcus aureus - metabolism ; Staphylococcus aureus - radiation effects ; Surface Plasmon Resonance ; Temperature ; Time Factors</subject><ispartof>Biophysical journal, 2006-01, Vol.90 (2), p.619-627</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Jan 15, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-f9cc6e080d9b601509b8adfc3b6b8717cadfdea0345b816e85021ba5ba9119bc3</citedby><cites>FETCH-LOGICAL-c484t-f9cc6e080d9b601509b8adfc3b6b8717cadfdea0345b816e85021ba5ba9119bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367066/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.105.061895$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16239330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zharov, Vladimir P.</creatorcontrib><creatorcontrib>Mercer, Kelly E.</creatorcontrib><creatorcontrib>Galitovskaya, Elena N.</creatorcontrib><creatorcontrib>Smeltzer, Mark S.</creatorcontrib><title>Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium
Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570
nm, 12
ns, 0.1–5
J/cm
2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing.</description><subject>Effects</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Gram-positive bacteria</subject><subject>Hot Temperature</subject><subject>Immunoglobulins</subject><subject>Lasers</subject><subject>Low-Level Light Therapy - methods</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Microscopy</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microscopy, Phase-Contrast</subject><subject>Nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Phototherapy - methods</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Spectrophotometry</subject><subject>Spectroscopy, Imaging, Other Techniques</subject><subject>Spectrum Analysis, Raman</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Staphylococcus aureus - radiation effects</subject><subject>Surface Plasmon Resonance</subject><subject>Temperature</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV-P1CAUxYnRuOPqJzAxjQ--dbyUQsuDJrrR1bhRE9dnAvR2yqRTRqBj9tvLTse_Dz4Bh3N_l8sh5DGFNeWVfG6c3w83cbumwNcgaCv5HbKivK5KgFbcJSsAECWrJT8jD2LcAtCKA71PzqiomGQMViR9HnzyacCw02PxUU_Hvd7jnJyNhZ66o9g5vZl8PGq9D8UXHNEmd8DigxtHN20K3xevtU0YnC6uddhgwq747tJQXPpxgex1yIAR40Nyr9djxEen9Zx8ffvm-uJdefXp8v3Fq6vS1m2dyl5aKxBa6KQRQDlI0-qut8wI0za0sfnQoQZWc9NSgS2HihrNjZaUSmPZOXm5cPez2WFncUpBj2of3E6HG-W1U3_fTG5QG39QlIkGhMiAZydA8N9mjEntXLQ4jnpCP0clGi5bWjXZ-PQf49bPYcrDqYpyIVsGtzS2mGzwMQbsf72EgrqNVP2MNAtcLZHmqid_DvG75pRhNrxYDJi_8uAwqGgdThY7F3JIqvPuvw1-AIYsuB0</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Zharov, Vladimir P.</creator><creator>Mercer, Kelly E.</creator><creator>Galitovskaya, Elena N.</creator><creator>Smeltzer, Mark S.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060101</creationdate><title>Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles</title><author>Zharov, Vladimir P. ; Mercer, Kelly E. ; Galitovskaya, Elena N. ; Smeltzer, Mark S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-f9cc6e080d9b601509b8adfc3b6b8717cadfdea0345b816e85021ba5ba9119bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Effects</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Gram-positive bacteria</topic><topic>Hot Temperature</topic><topic>Immunoglobulins</topic><topic>Lasers</topic><topic>Low-Level Light Therapy - methods</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Microscopy</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microscopy, Phase-Contrast</topic><topic>Nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Phototherapy - methods</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Spectrophotometry</topic><topic>Spectroscopy, Imaging, Other Techniques</topic><topic>Spectrum Analysis, Raman</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Staphylococcus aureus - radiation effects</topic><topic>Surface Plasmon Resonance</topic><topic>Temperature</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zharov, Vladimir P.</creatorcontrib><creatorcontrib>Mercer, Kelly E.</creatorcontrib><creatorcontrib>Galitovskaya, Elena N.</creatorcontrib><creatorcontrib>Smeltzer, Mark S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zharov, Vladimir P.</au><au>Mercer, Kelly E.</au><au>Galitovskaya, Elena N.</au><au>Smeltzer, Mark S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>90</volume><issue>2</issue><spage>619</spage><epage>627</epage><pages>619-627</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium
Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570
nm, 12
ns, 0.1–5
J/cm
2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16239330</pmid><doi>10.1529/biophysj.105.061895</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2006-01, Vol.90 (2), p.619-627 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367066 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); PubMed Central; EZB Electronic Journals Library |
subjects | Effects Gold Gold - chemistry Gram-positive bacteria Hot Temperature Immunoglobulins Lasers Low-Level Light Therapy - methods Medical imaging Medical research Microscopy Microscopy, Electron Microscopy, Electron, Transmission Microscopy, Phase-Contrast Nanoparticles Nanostructures - chemistry Nanotechnology - methods Phototherapy - methods Protein Transport Proteins Spectrophotometry Spectroscopy, Imaging, Other Techniques Spectrum Analysis, Raman Staphylococcus aureus - metabolism Staphylococcus aureus - radiation effects Surface Plasmon Resonance Temperature Time Factors |
title | Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photothermal%20Nanotherapeutics%20and%20Nanodiagnostics%20for%20Selective%20Killing%20of%20Bacteria%20Targeted%20with%20Gold%20Nanoparticles&rft.jtitle=Biophysical%20journal&rft.au=Zharov,%20Vladimir%20P.&rft.date=2006-01-01&rft.volume=90&rft.issue=2&rft.spage=619&rft.epage=627&rft.pages=619-627&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.061895&rft_dat=%3Cproquest_pubme%3E67598127%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215698306&rft_id=info:pmid/16239330&rft_els_id=S0006349506722408&rfr_iscdi=true |