Improvement of Biodesulfurization Rate by Assembling Nanosorbents on the Surfaces of Microbial Cells
To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study, γ-Al 2O 3 nanosorbents, which had the ability to selectively adsorb dibenz...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2005-12, Vol.89 (6), p.L58-L60 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | L60 |
---|---|
container_issue | 6 |
container_start_page | L58 |
container_title | Biophysical journal |
container_volume | 89 |
creator | Guobin, S. Huaiying, Z. Weiquan, C. Jianmin, X. Huizhou, L. |
description | To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study,
γ-Al
2O
3 nanosorbents, which had the ability to selectively adsorb dibenzothiophene (DBT) from organic phase, were assembled on the surfaces of
Pseudomonas delafieldii R-8 cell, a desulfurization strain.
γ-Al
2O
3 nanosorbents have the ability to adsorb DBT from oil phase, and the rate of adsorption was far higher than that of biodesulfurization. Thus, DBT can be quickly transferred to the biocatalyst surface where nanosorbents were located, which quickened DBT transfer from organic phase to biocatalyst surface and resulted in the increase of biodesulfurization rate. The desulfurization rate of the cells assembled with nanosorbents was approximately twofold higher than that of original cells. The cells assembled with nanosorbents were observed by a transmission electron microscope. |
doi_str_mv | 10.1529/biophysj.105.073718 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349505730083</els_id><sourcerecordid>19856647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-f89c1e865e63e904176c1f7b7b0a32aee6af3e7b4206054bdd789cbe548820a3</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVoSSZpf0EgiC6680SSrYcXLaRD0wbygCZ7IcnXGQ22NZXsgemvr8JM2rSLrATSd47uuQehU0rmlLP63PqwXm7Tak4JnxNZSqoO0IzyihWEKPEGzQghoiirmh-h45RWhFDGCT1ER1QwrkglZqi56tcxbKCHYcShxV98aCBNXTtF_8uMPgz4hxkB2y2-SAl62_nhEd-aIaQQbRYlnJFxCfh-iq1xkJ5cbryLwXrT4QV0XXqH3ramS_B-f56gh8uvD4vvxfXdt6vFxXXhOOVj0araUVCCgyihJhWVwtFWWmmJKZkBEKYtQdqKEUF4ZZtGZoUFXinFMnKCPu9s15PtoXF5umg6vY6-N3Grg_H635fBL_Vj2GhaCplXlQ0-7g1i-DlBGnXvk8sJzABhSprWigtRyQx--A9chSkOOZtmlItasVplqNxBeRcpRWj_TEKJfmpQPzeYL7jeNZhVZy9D_NXsK8vApx0AeZMbD1En52Fw0PgIbtRN8K9-8BuX2LDk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215698298</pqid></control><display><type>article</type><title>Improvement of Biodesulfurization Rate by Assembling Nanosorbents on the Surfaces of Microbial Cells</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guobin, S. ; Huaiying, Z. ; Weiquan, C. ; Jianmin, X. ; Huizhou, L.</creator><creatorcontrib>Guobin, S. ; Huaiying, Z. ; Weiquan, C. ; Jianmin, X. ; Huizhou, L.</creatorcontrib><description>To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study,
γ-Al
2O
3 nanosorbents, which had the ability to selectively adsorb dibenzothiophene (DBT) from organic phase, were assembled on the surfaces of
Pseudomonas delafieldii R-8 cell, a desulfurization strain.
γ-Al
2O
3 nanosorbents have the ability to adsorb DBT from oil phase, and the rate of adsorption was far higher than that of biodesulfurization. Thus, DBT can be quickly transferred to the biocatalyst surface where nanosorbents were located, which quickened DBT transfer from organic phase to biocatalyst surface and resulted in the increase of biodesulfurization rate. The desulfurization rate of the cells assembled with nanosorbents was approximately twofold higher than that of original cells. The cells assembled with nanosorbents were observed by a transmission electron microscope.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.073718</identifier><identifier>PMID: 16258046</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Absorption ; Aluminum Oxide - chemistry ; Aqueous solutions ; Biodegradation ; Biodegradation, Environmental ; Biophysical Letters ; Bioreactors - microbiology ; Cell Culture Techniques - methods ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cells ; Crystallization - methods ; Fossil fuels ; Microbiology ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Oil fields ; Particle Size ; Petroleum - microbiology ; Petroleum products ; Pseudomonas ; Pseudomonas - metabolism ; Sorbents ; Sulfur - chemistry ; Sulfur - isolation & purification ; Sulfur - metabolism ; Sulfur content ; Technological change ; Water</subject><ispartof>Biophysical journal, 2005-12, Vol.89 (6), p.L58-L60</ispartof><rights>2005 The Biophysical Society</rights><rights>Copyright Biophysical Society Dec 2005</rights><rights>Copyright © 2005, Biophysical Society 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-f89c1e865e63e904176c1f7b7b0a32aee6af3e7b4206054bdd789cbe548820a3</citedby><cites>FETCH-LOGICAL-c515t-f89c1e865e63e904176c1f7b7b0a32aee6af3e7b4206054bdd789cbe548820a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367006/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.105.073718$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27928,27929,45999,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16258046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guobin, S.</creatorcontrib><creatorcontrib>Huaiying, Z.</creatorcontrib><creatorcontrib>Weiquan, C.</creatorcontrib><creatorcontrib>Jianmin, X.</creatorcontrib><creatorcontrib>Huizhou, L.</creatorcontrib><title>Improvement of Biodesulfurization Rate by Assembling Nanosorbents on the Surfaces of Microbial Cells</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study,
γ-Al
2O
3 nanosorbents, which had the ability to selectively adsorb dibenzothiophene (DBT) from organic phase, were assembled on the surfaces of
Pseudomonas delafieldii R-8 cell, a desulfurization strain.
γ-Al
2O
3 nanosorbents have the ability to adsorb DBT from oil phase, and the rate of adsorption was far higher than that of biodesulfurization. Thus, DBT can be quickly transferred to the biocatalyst surface where nanosorbents were located, which quickened DBT transfer from organic phase to biocatalyst surface and resulted in the increase of biodesulfurization rate. The desulfurization rate of the cells assembled with nanosorbents was approximately twofold higher than that of original cells. The cells assembled with nanosorbents were observed by a transmission electron microscope.</description><subject>Absorption</subject><subject>Aluminum Oxide - chemistry</subject><subject>Aqueous solutions</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Biophysical Letters</subject><subject>Bioreactors - microbiology</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cells</subject><subject>Crystallization - methods</subject><subject>Fossil fuels</subject><subject>Microbiology</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Oil fields</subject><subject>Particle Size</subject><subject>Petroleum - microbiology</subject><subject>Petroleum products</subject><subject>Pseudomonas</subject><subject>Pseudomonas - metabolism</subject><subject>Sorbents</subject><subject>Sulfur - chemistry</subject><subject>Sulfur - isolation & purification</subject><subject>Sulfur - metabolism</subject><subject>Sulfur content</subject><subject>Technological change</subject><subject>Water</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtr3DAUhUVoSSZpf0EgiC6680SSrYcXLaRD0wbygCZ7IcnXGQ22NZXsgemvr8JM2rSLrATSd47uuQehU0rmlLP63PqwXm7Tak4JnxNZSqoO0IzyihWEKPEGzQghoiirmh-h45RWhFDGCT1ER1QwrkglZqi56tcxbKCHYcShxV98aCBNXTtF_8uMPgz4hxkB2y2-SAl62_nhEd-aIaQQbRYlnJFxCfh-iq1xkJ5cbryLwXrT4QV0XXqH3ramS_B-f56gh8uvD4vvxfXdt6vFxXXhOOVj0araUVCCgyihJhWVwtFWWmmJKZkBEKYtQdqKEUF4ZZtGZoUFXinFMnKCPu9s15PtoXF5umg6vY6-N3Grg_H635fBL_Vj2GhaCplXlQ0-7g1i-DlBGnXvk8sJzABhSprWigtRyQx--A9chSkOOZtmlItasVplqNxBeRcpRWj_TEKJfmpQPzeYL7jeNZhVZy9D_NXsK8vApx0AeZMbD1En52Fw0PgIbtRN8K9-8BuX2LDk</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Guobin, S.</creator><creator>Huaiying, Z.</creator><creator>Weiquan, C.</creator><creator>Jianmin, X.</creator><creator>Huizhou, L.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QL</scope><scope>7T7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20051201</creationdate><title>Improvement of Biodesulfurization Rate by Assembling Nanosorbents on the Surfaces of Microbial Cells</title><author>Guobin, S. ; Huaiying, Z. ; Weiquan, C. ; Jianmin, X. ; Huizhou, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-f89c1e865e63e904176c1f7b7b0a32aee6af3e7b4206054bdd789cbe548820a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Absorption</topic><topic>Aluminum Oxide - chemistry</topic><topic>Aqueous solutions</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Biophysical Letters</topic><topic>Bioreactors - microbiology</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cells</topic><topic>Crystallization - methods</topic><topic>Fossil fuels</topic><topic>Microbiology</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Oil fields</topic><topic>Particle Size</topic><topic>Petroleum - microbiology</topic><topic>Petroleum products</topic><topic>Pseudomonas</topic><topic>Pseudomonas - metabolism</topic><topic>Sorbents</topic><topic>Sulfur - chemistry</topic><topic>Sulfur - isolation & purification</topic><topic>Sulfur - metabolism</topic><topic>Sulfur content</topic><topic>Technological change</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guobin, S.</creatorcontrib><creatorcontrib>Huaiying, Z.</creatorcontrib><creatorcontrib>Weiquan, C.</creatorcontrib><creatorcontrib>Jianmin, X.</creatorcontrib><creatorcontrib>Huizhou, L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guobin, S.</au><au>Huaiying, Z.</au><au>Weiquan, C.</au><au>Jianmin, X.</au><au>Huizhou, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Biodesulfurization Rate by Assembling Nanosorbents on the Surfaces of Microbial Cells</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>89</volume><issue>6</issue><spage>L58</spage><epage>L60</epage><pages>L58-L60</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study,
γ-Al
2O
3 nanosorbents, which had the ability to selectively adsorb dibenzothiophene (DBT) from organic phase, were assembled on the surfaces of
Pseudomonas delafieldii R-8 cell, a desulfurization strain.
γ-Al
2O
3 nanosorbents have the ability to adsorb DBT from oil phase, and the rate of adsorption was far higher than that of biodesulfurization. Thus, DBT can be quickly transferred to the biocatalyst surface where nanosorbents were located, which quickened DBT transfer from organic phase to biocatalyst surface and resulted in the increase of biodesulfurization rate. The desulfurization rate of the cells assembled with nanosorbents was approximately twofold higher than that of original cells. The cells assembled with nanosorbents were observed by a transmission electron microscope.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16258046</pmid><doi>10.1529/biophysj.105.073718</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2005-12, Vol.89 (6), p.L58-L60 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367006 |
source | PubMed Central Free; MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Absorption Aluminum Oxide - chemistry Aqueous solutions Biodegradation Biodegradation, Environmental Biophysical Letters Bioreactors - microbiology Cell Culture Techniques - methods Cell Membrane - chemistry Cell Membrane - metabolism Cells Crystallization - methods Fossil fuels Microbiology Nanostructures - chemistry Nanostructures - ultrastructure Oil fields Particle Size Petroleum - microbiology Petroleum products Pseudomonas Pseudomonas - metabolism Sorbents Sulfur - chemistry Sulfur - isolation & purification Sulfur - metabolism Sulfur content Technological change Water |
title | Improvement of Biodesulfurization Rate by Assembling Nanosorbents on the Surfaces of Microbial Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Biodesulfurization%20Rate%20by%20Assembling%20Nanosorbents%20on%20the%20Surfaces%20of%20Microbial%20Cells&rft.jtitle=Biophysical%20journal&rft.au=Guobin,%20S.&rft.date=2005-12-01&rft.volume=89&rft.issue=6&rft.spage=L58&rft.epage=L60&rft.pages=L58-L60&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.073718&rft_dat=%3Cproquest_pubme%3E19856647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215698298&rft_id=info:pmid/16258046&rft_els_id=S0006349505730083&rfr_iscdi=true |