Interactions of Peptides with a Protein Pore
The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic α-helical peptides b...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2005-08, Vol.89 (2), p.1030-1045 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1045 |
---|---|
container_issue | 2 |
container_start_page | 1030 |
container_title | Biophysical journal |
container_volume | 89 |
creator | Movileanu, Liviu Schmittschmitt, Jason P. Martin Scholtz, J. Bayley, Hagan |
description | The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic
α-helical peptides between the bulk aqueous phase and the transmembrane
β-barrel of the
α-hemolysin (
αHL) protein pore at the single-molecule level. The experimental kinetic data suggest a two-barrier, single-well free energy profile for peptide transit through the
αHL pore. This free energy profile is strongly voltage- and peptide-length-dependent. We used the Woodhull-Eyring formalism to rationalize the values measured for the association and dissociation rate constants
k
on and
k
off, and to separate
k
off into individual rate constants for exit through each of the openings of the protein pore. The rate constants
k
on,
k
off
cis
,
and
k
off
trans
decreased with the length of the peptide. At high transmembrane potentials, the alanine-based peptides, which include bulky lysine side chains, bind more strongly (formation constants
K
f
∼
tens of M
−1) than highly flexible polyethylene glycols (
K
f
∼
M
−1) to the lumen of the
αHL protein pore. In contrast, at zero transmembrane potential, the peptides bind weakly to the lumen of the pore, and the affinity decreases with the peptide length, similar to the case of the polyethylene glycols. The binding is enhanced at increased transmembrane potentials, because the free energy contribution Δ
G
=
−
ζδFV/R
T predominates with the peptides. We suggest that the
αHL protein may serve as a robust and versatile model for examining the interactions between positively charged signal peptides and a
β-barrel pore. |
doi_str_mv | 10.1529/biophysj.104.057406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1366589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349505727521</els_id><sourcerecordid>68086942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-1274808f3bd57e44a94b14d2ad3c2ebdfa54515f269431a3843ed8f658548a583</originalsourceid><addsrcrecordid>eNp9kUtLAzEQx4Motj4-gSCLB09uzXObPSiI-CgI9qDnkE1mbUq7qUmq-O2NtD4PngZmfvOfxx-hA4IHRND6tHF-MXmL0wHBfIDFkONqA_WJ4LTEWFabqI8xrkrGa9FDOzFOMSZUYLKNekTUlFFK--hk1CUI2iTnu1j4thjDIjkLsXh1aVLoYhx8AtcVYx9gD221ehZhfx130eP11cPlbXl3fzO6vLgrDZc8lYQOucSyZY0VQ-Bc17wh3FJtmaHQ2FYLLohoaVVzRjSTnIGVbSWk4FILyXbR-Up3sWzmYA10KeiZWgQ31-FNee3U70rnJurJvyjCqqxSZ4HjtUDwz0uISc1dNDCb6Q78Mqoqr5eH0wwe_QGnfhm6fJyiRAwxYwRniK0gE3yMAdqvTQhWH1aoTytygquVFbnr8OcR3z3r32fgbAVAfuWLg6CicdAZsC6AScp69--Ad4tImv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215703310</pqid></control><display><type>article</type><title>Interactions of Peptides with a Protein Pore</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Movileanu, Liviu ; Schmittschmitt, Jason P. ; Martin Scholtz, J. ; Bayley, Hagan</creator><creatorcontrib>Movileanu, Liviu ; Schmittschmitt, Jason P. ; Martin Scholtz, J. ; Bayley, Hagan</creatorcontrib><description>The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic
α-helical peptides between the bulk aqueous phase and the transmembrane
β-barrel of the
α-hemolysin (
αHL) protein pore at the single-molecule level. The experimental kinetic data suggest a two-barrier, single-well free energy profile for peptide transit through the
αHL pore. This free energy profile is strongly voltage- and peptide-length-dependent. We used the Woodhull-Eyring formalism to rationalize the values measured for the association and dissociation rate constants
k
on and
k
off, and to separate
k
off into individual rate constants for exit through each of the openings of the protein pore. The rate constants
k
on,
k
off
cis
,
and
k
off
trans
decreased with the length of the peptide. At high transmembrane potentials, the alanine-based peptides, which include bulky lysine side chains, bind more strongly (formation constants
K
f
∼
tens of M
−1) than highly flexible polyethylene glycols (
K
f
∼
M
−1) to the lumen of the
αHL protein pore. In contrast, at zero transmembrane potential, the peptides bind weakly to the lumen of the pore, and the affinity decreases with the peptide length, similar to the case of the polyethylene glycols. The binding is enhanced at increased transmembrane potentials, because the free energy contribution Δ
G
=
−
ζδFV/R
T predominates with the peptides. We suggest that the
αHL protein may serve as a robust and versatile model for examining the interactions between positively charged signal peptides and a
β-barrel pore.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.104.057406</identifier><identifier>PMID: 15923222</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Toxins - chemistry ; Binding Sites ; Biophysics ; Channels, Receptors, and Electrical Signaling ; Computer Simulation ; Hemolysin Proteins - chemistry ; Ion Channel Gating ; Kinetics ; Lipid Bilayers - chemistry ; Lipids ; Membrane Fluidity ; Membrane Potentials ; Models, Chemical ; Models, Molecular ; Peptides ; Peptides - chemistry ; Porosity ; Protein Binding ; Proteins ; Temperature</subject><ispartof>Biophysical journal, 2005-08, Vol.89 (2), p.1030-1045</ispartof><rights>2005 The Biophysical Society</rights><rights>Copyright Biophysical Society Aug 2005</rights><rights>Copyright © 2005, Biophysical Society 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-1274808f3bd57e44a94b14d2ad3c2ebdfa54515f269431a3843ed8f658548a583</citedby><cites>FETCH-LOGICAL-c484t-1274808f3bd57e44a94b14d2ad3c2ebdfa54515f269431a3843ed8f658548a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366589/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.104.057406$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15923222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Movileanu, Liviu</creatorcontrib><creatorcontrib>Schmittschmitt, Jason P.</creatorcontrib><creatorcontrib>Martin Scholtz, J.</creatorcontrib><creatorcontrib>Bayley, Hagan</creatorcontrib><title>Interactions of Peptides with a Protein Pore</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic
α-helical peptides between the bulk aqueous phase and the transmembrane
β-barrel of the
α-hemolysin (
αHL) protein pore at the single-molecule level. The experimental kinetic data suggest a two-barrier, single-well free energy profile for peptide transit through the
αHL pore. This free energy profile is strongly voltage- and peptide-length-dependent. We used the Woodhull-Eyring formalism to rationalize the values measured for the association and dissociation rate constants
k
on and
k
off, and to separate
k
off into individual rate constants for exit through each of the openings of the protein pore. The rate constants
k
on,
k
off
cis
,
and
k
off
trans
decreased with the length of the peptide. At high transmembrane potentials, the alanine-based peptides, which include bulky lysine side chains, bind more strongly (formation constants
K
f
∼
tens of M
−1) than highly flexible polyethylene glycols (
K
f
∼
M
−1) to the lumen of the
αHL protein pore. In contrast, at zero transmembrane potential, the peptides bind weakly to the lumen of the pore, and the affinity decreases with the peptide length, similar to the case of the polyethylene glycols. The binding is enhanced at increased transmembrane potentials, because the free energy contribution Δ
G
=
−
ζδFV/R
T predominates with the peptides. We suggest that the
αHL protein may serve as a robust and versatile model for examining the interactions between positively charged signal peptides and a
β-barrel pore.</description><subject>Bacterial Toxins - chemistry</subject><subject>Binding Sites</subject><subject>Biophysics</subject><subject>Channels, Receptors, and Electrical Signaling</subject><subject>Computer Simulation</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Ion Channel Gating</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Fluidity</subject><subject>Membrane Potentials</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Porosity</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Temperature</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtLAzEQx4Motj4-gSCLB09uzXObPSiI-CgI9qDnkE1mbUq7qUmq-O2NtD4PngZmfvOfxx-hA4IHRND6tHF-MXmL0wHBfIDFkONqA_WJ4LTEWFabqI8xrkrGa9FDOzFOMSZUYLKNekTUlFFK--hk1CUI2iTnu1j4thjDIjkLsXh1aVLoYhx8AtcVYx9gD221ehZhfx130eP11cPlbXl3fzO6vLgrDZc8lYQOucSyZY0VQ-Bc17wh3FJtmaHQ2FYLLohoaVVzRjSTnIGVbSWk4FILyXbR-Up3sWzmYA10KeiZWgQ31-FNee3U70rnJurJvyjCqqxSZ4HjtUDwz0uISc1dNDCb6Q78Mqoqr5eH0wwe_QGnfhm6fJyiRAwxYwRniK0gE3yMAdqvTQhWH1aoTytygquVFbnr8OcR3z3r32fgbAVAfuWLg6CicdAZsC6AScp69--Ad4tImv4</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Movileanu, Liviu</creator><creator>Schmittschmitt, Jason P.</creator><creator>Martin Scholtz, J.</creator><creator>Bayley, Hagan</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050801</creationdate><title>Interactions of Peptides with a Protein Pore</title><author>Movileanu, Liviu ; Schmittschmitt, Jason P. ; Martin Scholtz, J. ; Bayley, Hagan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-1274808f3bd57e44a94b14d2ad3c2ebdfa54515f269431a3843ed8f658548a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bacterial Toxins - chemistry</topic><topic>Binding Sites</topic><topic>Biophysics</topic><topic>Channels, Receptors, and Electrical Signaling</topic><topic>Computer Simulation</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Ion Channel Gating</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Fluidity</topic><topic>Membrane Potentials</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Porosity</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Movileanu, Liviu</creatorcontrib><creatorcontrib>Schmittschmitt, Jason P.</creatorcontrib><creatorcontrib>Martin Scholtz, J.</creatorcontrib><creatorcontrib>Bayley, Hagan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Movileanu, Liviu</au><au>Schmittschmitt, Jason P.</au><au>Martin Scholtz, J.</au><au>Bayley, Hagan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of Peptides with a Protein Pore</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>89</volume><issue>2</issue><spage>1030</spage><epage>1045</epage><pages>1030-1045</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic
α-helical peptides between the bulk aqueous phase and the transmembrane
β-barrel of the
α-hemolysin (
αHL) protein pore at the single-molecule level. The experimental kinetic data suggest a two-barrier, single-well free energy profile for peptide transit through the
αHL pore. This free energy profile is strongly voltage- and peptide-length-dependent. We used the Woodhull-Eyring formalism to rationalize the values measured for the association and dissociation rate constants
k
on and
k
off, and to separate
k
off into individual rate constants for exit through each of the openings of the protein pore. The rate constants
k
on,
k
off
cis
,
and
k
off
trans
decreased with the length of the peptide. At high transmembrane potentials, the alanine-based peptides, which include bulky lysine side chains, bind more strongly (formation constants
K
f
∼
tens of M
−1) than highly flexible polyethylene glycols (
K
f
∼
M
−1) to the lumen of the
αHL protein pore. In contrast, at zero transmembrane potential, the peptides bind weakly to the lumen of the pore, and the affinity decreases with the peptide length, similar to the case of the polyethylene glycols. The binding is enhanced at increased transmembrane potentials, because the free energy contribution Δ
G
=
−
ζδFV/R
T predominates with the peptides. We suggest that the
αHL protein may serve as a robust and versatile model for examining the interactions between positively charged signal peptides and a
β-barrel pore.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15923222</pmid><doi>10.1529/biophysj.104.057406</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2005-08, Vol.89 (2), p.1030-1045 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1366589 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bacterial Toxins - chemistry Binding Sites Biophysics Channels, Receptors, and Electrical Signaling Computer Simulation Hemolysin Proteins - chemistry Ion Channel Gating Kinetics Lipid Bilayers - chemistry Lipids Membrane Fluidity Membrane Potentials Models, Chemical Models, Molecular Peptides Peptides - chemistry Porosity Protein Binding Proteins Temperature |
title | Interactions of Peptides with a Protein Pore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20Peptides%20with%20a%20Protein%20Pore&rft.jtitle=Biophysical%20journal&rft.au=Movileanu,%20Liviu&rft.date=2005-08-01&rft.volume=89&rft.issue=2&rft.spage=1030&rft.epage=1045&rft.pages=1030-1045&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.104.057406&rft_dat=%3Cproquest_pubme%3E68086942%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215703310&rft_id=info:pmid/15923222&rft_els_id=S0006349505727521&rfr_iscdi=true |