Interactions of Peptides with a Protein Pore

The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic α-helical peptides b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2005-08, Vol.89 (2), p.1030-1045
Hauptverfasser: Movileanu, Liviu, Schmittschmitt, Jason P., Martin Scholtz, J., Bayley, Hagan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1045
container_issue 2
container_start_page 1030
container_title Biophysical journal
container_volume 89
creator Movileanu, Liviu
Schmittschmitt, Jason P.
Martin Scholtz, J.
Bayley, Hagan
description The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic α-helical peptides between the bulk aqueous phase and the transmembrane β-barrel of the α-hemolysin ( αHL) protein pore at the single-molecule level. The experimental kinetic data suggest a two-barrier, single-well free energy profile for peptide transit through the αHL pore. This free energy profile is strongly voltage- and peptide-length-dependent. We used the Woodhull-Eyring formalism to rationalize the values measured for the association and dissociation rate constants k on and k off, and to separate k off into individual rate constants for exit through each of the openings of the protein pore. The rate constants k on, k off cis , and k off trans decreased with the length of the peptide. At high transmembrane potentials, the alanine-based peptides, which include bulky lysine side chains, bind more strongly (formation constants K f ∼ tens of M −1) than highly flexible polyethylene glycols ( K f ∼ M −1) to the lumen of the αHL protein pore. In contrast, at zero transmembrane potential, the peptides bind weakly to the lumen of the pore, and the affinity decreases with the peptide length, similar to the case of the polyethylene glycols. The binding is enhanced at increased transmembrane potentials, because the free energy contribution Δ G = − ζδFV/R T predominates with the peptides. We suggest that the αHL protein may serve as a robust and versatile model for examining the interactions between positively charged signal peptides and a β-barrel pore.
doi_str_mv 10.1529/biophysj.104.057406
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1366589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349505727521</els_id><sourcerecordid>68086942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-1274808f3bd57e44a94b14d2ad3c2ebdfa54515f269431a3843ed8f658548a583</originalsourceid><addsrcrecordid>eNp9kUtLAzEQx4Motj4-gSCLB09uzXObPSiI-CgI9qDnkE1mbUq7qUmq-O2NtD4PngZmfvOfxx-hA4IHRND6tHF-MXmL0wHBfIDFkONqA_WJ4LTEWFabqI8xrkrGa9FDOzFOMSZUYLKNekTUlFFK--hk1CUI2iTnu1j4thjDIjkLsXh1aVLoYhx8AtcVYx9gD221ehZhfx130eP11cPlbXl3fzO6vLgrDZc8lYQOucSyZY0VQ-Bc17wh3FJtmaHQ2FYLLohoaVVzRjSTnIGVbSWk4FILyXbR-Up3sWzmYA10KeiZWgQ31-FNee3U70rnJurJvyjCqqxSZ4HjtUDwz0uISc1dNDCb6Q78Mqoqr5eH0wwe_QGnfhm6fJyiRAwxYwRniK0gE3yMAdqvTQhWH1aoTytygquVFbnr8OcR3z3r32fgbAVAfuWLg6CicdAZsC6AScp69--Ad4tImv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215703310</pqid></control><display><type>article</type><title>Interactions of Peptides with a Protein Pore</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Movileanu, Liviu ; Schmittschmitt, Jason P. ; Martin Scholtz, J. ; Bayley, Hagan</creator><creatorcontrib>Movileanu, Liviu ; Schmittschmitt, Jason P. ; Martin Scholtz, J. ; Bayley, Hagan</creatorcontrib><description>The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic α-helical peptides between the bulk aqueous phase and the transmembrane β-barrel of the α-hemolysin ( αHL) protein pore at the single-molecule level. The experimental kinetic data suggest a two-barrier, single-well free energy profile for peptide transit through the αHL pore. This free energy profile is strongly voltage- and peptide-length-dependent. We used the Woodhull-Eyring formalism to rationalize the values measured for the association and dissociation rate constants k on and k off, and to separate k off into individual rate constants for exit through each of the openings of the protein pore. The rate constants k on, k off cis , and k off trans decreased with the length of the peptide. At high transmembrane potentials, the alanine-based peptides, which include bulky lysine side chains, bind more strongly (formation constants K f ∼ tens of M −1) than highly flexible polyethylene glycols ( K f ∼ M −1) to the lumen of the αHL protein pore. In contrast, at zero transmembrane potential, the peptides bind weakly to the lumen of the pore, and the affinity decreases with the peptide length, similar to the case of the polyethylene glycols. The binding is enhanced at increased transmembrane potentials, because the free energy contribution Δ G = − ζδFV/R T predominates with the peptides. We suggest that the αHL protein may serve as a robust and versatile model for examining the interactions between positively charged signal peptides and a β-barrel pore.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.104.057406</identifier><identifier>PMID: 15923222</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Toxins - chemistry ; Binding Sites ; Biophysics ; Channels, Receptors, and Electrical Signaling ; Computer Simulation ; Hemolysin Proteins - chemistry ; Ion Channel Gating ; Kinetics ; Lipid Bilayers - chemistry ; Lipids ; Membrane Fluidity ; Membrane Potentials ; Models, Chemical ; Models, Molecular ; Peptides ; Peptides - chemistry ; Porosity ; Protein Binding ; Proteins ; Temperature</subject><ispartof>Biophysical journal, 2005-08, Vol.89 (2), p.1030-1045</ispartof><rights>2005 The Biophysical Society</rights><rights>Copyright Biophysical Society Aug 2005</rights><rights>Copyright © 2005, Biophysical Society 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-1274808f3bd57e44a94b14d2ad3c2ebdfa54515f269431a3843ed8f658548a583</citedby><cites>FETCH-LOGICAL-c484t-1274808f3bd57e44a94b14d2ad3c2ebdfa54515f269431a3843ed8f658548a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366589/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.104.057406$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15923222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Movileanu, Liviu</creatorcontrib><creatorcontrib>Schmittschmitt, Jason P.</creatorcontrib><creatorcontrib>Martin Scholtz, J.</creatorcontrib><creatorcontrib>Bayley, Hagan</creatorcontrib><title>Interactions of Peptides with a Protein Pore</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic α-helical peptides between the bulk aqueous phase and the transmembrane β-barrel of the α-hemolysin ( αHL) protein pore at the single-molecule level. The experimental kinetic data suggest a two-barrier, single-well free energy profile for peptide transit through the αHL pore. This free energy profile is strongly voltage- and peptide-length-dependent. We used the Woodhull-Eyring formalism to rationalize the values measured for the association and dissociation rate constants k on and k off, and to separate k off into individual rate constants for exit through each of the openings of the protein pore. The rate constants k on, k off cis , and k off trans decreased with the length of the peptide. At high transmembrane potentials, the alanine-based peptides, which include bulky lysine side chains, bind more strongly (formation constants K f ∼ tens of M −1) than highly flexible polyethylene glycols ( K f ∼ M −1) to the lumen of the αHL protein pore. In contrast, at zero transmembrane potential, the peptides bind weakly to the lumen of the pore, and the affinity decreases with the peptide length, similar to the case of the polyethylene glycols. The binding is enhanced at increased transmembrane potentials, because the free energy contribution Δ G = − ζδFV/R T predominates with the peptides. We suggest that the αHL protein may serve as a robust and versatile model for examining the interactions between positively charged signal peptides and a β-barrel pore.</description><subject>Bacterial Toxins - chemistry</subject><subject>Binding Sites</subject><subject>Biophysics</subject><subject>Channels, Receptors, and Electrical Signaling</subject><subject>Computer Simulation</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Ion Channel Gating</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Fluidity</subject><subject>Membrane Potentials</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Porosity</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Temperature</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtLAzEQx4Motj4-gSCLB09uzXObPSiI-CgI9qDnkE1mbUq7qUmq-O2NtD4PngZmfvOfxx-hA4IHRND6tHF-MXmL0wHBfIDFkONqA_WJ4LTEWFabqI8xrkrGa9FDOzFOMSZUYLKNekTUlFFK--hk1CUI2iTnu1j4thjDIjkLsXh1aVLoYhx8AtcVYx9gD221ehZhfx130eP11cPlbXl3fzO6vLgrDZc8lYQOucSyZY0VQ-Bc17wh3FJtmaHQ2FYLLohoaVVzRjSTnIGVbSWk4FILyXbR-Up3sWzmYA10KeiZWgQ31-FNee3U70rnJurJvyjCqqxSZ4HjtUDwz0uISc1dNDCb6Q78Mqoqr5eH0wwe_QGnfhm6fJyiRAwxYwRniK0gE3yMAdqvTQhWH1aoTytygquVFbnr8OcR3z3r32fgbAVAfuWLg6CicdAZsC6AScp69--Ad4tImv4</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Movileanu, Liviu</creator><creator>Schmittschmitt, Jason P.</creator><creator>Martin Scholtz, J.</creator><creator>Bayley, Hagan</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050801</creationdate><title>Interactions of Peptides with a Protein Pore</title><author>Movileanu, Liviu ; Schmittschmitt, Jason P. ; Martin Scholtz, J. ; Bayley, Hagan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-1274808f3bd57e44a94b14d2ad3c2ebdfa54515f269431a3843ed8f658548a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bacterial Toxins - chemistry</topic><topic>Binding Sites</topic><topic>Biophysics</topic><topic>Channels, Receptors, and Electrical Signaling</topic><topic>Computer Simulation</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Ion Channel Gating</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Fluidity</topic><topic>Membrane Potentials</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Porosity</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Movileanu, Liviu</creatorcontrib><creatorcontrib>Schmittschmitt, Jason P.</creatorcontrib><creatorcontrib>Martin Scholtz, J.</creatorcontrib><creatorcontrib>Bayley, Hagan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Movileanu, Liviu</au><au>Schmittschmitt, Jason P.</au><au>Martin Scholtz, J.</au><au>Bayley, Hagan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of Peptides with a Protein Pore</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>89</volume><issue>2</issue><spage>1030</spage><epage>1045</epage><pages>1030-1045</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The partitioning of polypeptides into nanoscale transmembrane pores is of fundamental importance in biology. Examples include protein translocation in the endoplasmic reticulum and the passage of proteins through the nuclear pore complex. Here we examine the exchange of cationic α-helical peptides between the bulk aqueous phase and the transmembrane β-barrel of the α-hemolysin ( αHL) protein pore at the single-molecule level. The experimental kinetic data suggest a two-barrier, single-well free energy profile for peptide transit through the αHL pore. This free energy profile is strongly voltage- and peptide-length-dependent. We used the Woodhull-Eyring formalism to rationalize the values measured for the association and dissociation rate constants k on and k off, and to separate k off into individual rate constants for exit through each of the openings of the protein pore. The rate constants k on, k off cis , and k off trans decreased with the length of the peptide. At high transmembrane potentials, the alanine-based peptides, which include bulky lysine side chains, bind more strongly (formation constants K f ∼ tens of M −1) than highly flexible polyethylene glycols ( K f ∼ M −1) to the lumen of the αHL protein pore. In contrast, at zero transmembrane potential, the peptides bind weakly to the lumen of the pore, and the affinity decreases with the peptide length, similar to the case of the polyethylene glycols. The binding is enhanced at increased transmembrane potentials, because the free energy contribution Δ G = − ζδFV/R T predominates with the peptides. We suggest that the αHL protein may serve as a robust and versatile model for examining the interactions between positively charged signal peptides and a β-barrel pore.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15923222</pmid><doi>10.1529/biophysj.104.057406</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2005-08, Vol.89 (2), p.1030-1045
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1366589
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bacterial Toxins - chemistry
Binding Sites
Biophysics
Channels, Receptors, and Electrical Signaling
Computer Simulation
Hemolysin Proteins - chemistry
Ion Channel Gating
Kinetics
Lipid Bilayers - chemistry
Lipids
Membrane Fluidity
Membrane Potentials
Models, Chemical
Models, Molecular
Peptides
Peptides - chemistry
Porosity
Protein Binding
Proteins
Temperature
title Interactions of Peptides with a Protein Pore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20Peptides%20with%20a%20Protein%20Pore&rft.jtitle=Biophysical%20journal&rft.au=Movileanu,%20Liviu&rft.date=2005-08-01&rft.volume=89&rft.issue=2&rft.spage=1030&rft.epage=1045&rft.pages=1030-1045&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.104.057406&rft_dat=%3Cproquest_pubme%3E68086942%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215703310&rft_id=info:pmid/15923222&rft_els_id=S0006349505727521&rfr_iscdi=true