Defining the mammalian CArGome

Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Research 2006-02, Vol.16 (2), p.197-207
Hauptverfasser: Sun, Qiang, Chen, Guang, Streb, Jeffrey W, Long, Xiaochun, Yang, Yumei, Stoeckert, Jr, Christian J, Miano, Joseph M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 2
container_start_page 197
container_title Genome Research
container_volume 16
creator Sun, Qiang
Chen, Guang
Streb, Jeffrey W
Long, Xiaochun
Yang, Yumei
Stoeckert, Jr, Christian J
Miano, Joseph M
description Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.
doi_str_mv 10.1101/gr.4108706
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1361715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67624854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-7f9508cb27bdbe638b3188e475c7c7c2bb9d61cf33e9ff1f7d5293f456be9dec3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotlY3PkDpyoUwNWdy3wilahUKbnQdkplkOjKXmkwF394pHbys5CzOgfPx8_MhdAl4DoDhpghzClgKzI_QGBhVCaNcHfc3ljJRmMEIncX4hjEmVMpTNAJOOCNCjtH0zvmyKZti1m3crDZ1barSNLPlIqza2p2jE2-q6C6GPUGvD_cvy8dk_bx6Wi7WSUYF6RLhFcMys6mwuXWcSEtASkcFy0Q_qbUq55B5QpzyHrzIWaqIp4xbp3KXkQm6PeRud7Z2eeaaLphKb0NZm_CpW1Pqv5-m3Oii_dBAOAhgfcDVEBDa952Lna7LmLmqMo1rd1FzwVMqGf0XBEEFJ2oPXh_ALLQxBue_2wDWe--6CHrw3sPT3_1_0EE0-QJam31w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17476394</pqid></control><display><type>article</type><title>Defining the mammalian CArGome</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sun, Qiang ; Chen, Guang ; Streb, Jeffrey W ; Long, Xiaochun ; Yang, Yumei ; Stoeckert, Jr, Christian J ; Miano, Joseph M</creator><creatorcontrib>Sun, Qiang ; Chen, Guang ; Streb, Jeffrey W ; Long, Xiaochun ; Yang, Yumei ; Stoeckert, Jr, Christian J ; Miano, Joseph M</creatorcontrib><description>Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered &gt;100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gr.4108706</identifier><identifier>PMID: 16365378</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Cell Line ; Cloning, Molecular - methods ; Cytoskeleton - genetics ; Gene Expression Regulation - genetics ; Genome, Human - genetics ; Humans ; Letters ; Mice ; Serum Response Element - genetics ; Serum Response Factor - genetics ; Transcription, Genetic - genetics</subject><ispartof>Genome Research, 2006-02, Vol.16 (2), p.197-207</ispartof><rights>Copyright © 2006, Cold Spring Harbor Laboratory Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-7f9508cb27bdbe638b3188e475c7c7c2bb9d61cf33e9ff1f7d5293f456be9dec3</citedby><cites>FETCH-LOGICAL-c473t-7f9508cb27bdbe638b3188e475c7c7c2bb9d61cf33e9ff1f7d5293f456be9dec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361715/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361715/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16365378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Streb, Jeffrey W</creatorcontrib><creatorcontrib>Long, Xiaochun</creatorcontrib><creatorcontrib>Yang, Yumei</creatorcontrib><creatorcontrib>Stoeckert, Jr, Christian J</creatorcontrib><creatorcontrib>Miano, Joseph M</creatorcontrib><title>Defining the mammalian CArGome</title><title>Genome Research</title><addtitle>Genome Res</addtitle><description>Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered &gt;100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Cloning, Molecular - methods</subject><subject>Cytoskeleton - genetics</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genome, Human - genetics</subject><subject>Humans</subject><subject>Letters</subject><subject>Mice</subject><subject>Serum Response Element - genetics</subject><subject>Serum Response Factor - genetics</subject><subject>Transcription, Genetic - genetics</subject><issn>1088-9051</issn><issn>1549-5469</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKAzEUhoMotlY3PkDpyoUwNWdy3wilahUKbnQdkplkOjKXmkwF394pHbys5CzOgfPx8_MhdAl4DoDhpghzClgKzI_QGBhVCaNcHfc3ljJRmMEIncX4hjEmVMpTNAJOOCNCjtH0zvmyKZti1m3crDZ1barSNLPlIqza2p2jE2-q6C6GPUGvD_cvy8dk_bx6Wi7WSUYF6RLhFcMys6mwuXWcSEtASkcFy0Q_qbUq55B5QpzyHrzIWaqIp4xbp3KXkQm6PeRud7Z2eeaaLphKb0NZm_CpW1Pqv5-m3Oii_dBAOAhgfcDVEBDa952Lna7LmLmqMo1rd1FzwVMqGf0XBEEFJ2oPXh_ALLQxBue_2wDWe--6CHrw3sPT3_1_0EE0-QJam31w</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Sun, Qiang</creator><creator>Chen, Guang</creator><creator>Streb, Jeffrey W</creator><creator>Long, Xiaochun</creator><creator>Yang, Yumei</creator><creator>Stoeckert, Jr, Christian J</creator><creator>Miano, Joseph M</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060201</creationdate><title>Defining the mammalian CArGome</title><author>Sun, Qiang ; Chen, Guang ; Streb, Jeffrey W ; Long, Xiaochun ; Yang, Yumei ; Stoeckert, Jr, Christian J ; Miano, Joseph M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-7f9508cb27bdbe638b3188e475c7c7c2bb9d61cf33e9ff1f7d5293f456be9dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Cloning, Molecular - methods</topic><topic>Cytoskeleton - genetics</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genome, Human - genetics</topic><topic>Humans</topic><topic>Letters</topic><topic>Mice</topic><topic>Serum Response Element - genetics</topic><topic>Serum Response Factor - genetics</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Streb, Jeffrey W</creatorcontrib><creatorcontrib>Long, Xiaochun</creatorcontrib><creatorcontrib>Yang, Yumei</creatorcontrib><creatorcontrib>Stoeckert, Jr, Christian J</creatorcontrib><creatorcontrib>Miano, Joseph M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qiang</au><au>Chen, Guang</au><au>Streb, Jeffrey W</au><au>Long, Xiaochun</au><au>Yang, Yumei</au><au>Stoeckert, Jr, Christian J</au><au>Miano, Joseph M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the mammalian CArGome</atitle><jtitle>Genome Research</jtitle><addtitle>Genome Res</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>197</spage><epage>207</epage><pages>197-207</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><eissn>1549-5477</eissn><abstract>Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered &gt;100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>16365378</pmid><doi>10.1101/gr.4108706</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome Research, 2006-02, Vol.16 (2), p.197-207
issn 1088-9051
1549-5469
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1361715
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Cell Line
Cloning, Molecular - methods
Cytoskeleton - genetics
Gene Expression Regulation - genetics
Genome, Human - genetics
Humans
Letters
Mice
Serum Response Element - genetics
Serum Response Factor - genetics
Transcription, Genetic - genetics
title Defining the mammalian CArGome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20mammalian%20CArGome&rft.jtitle=Genome%20Research&rft.au=Sun,%20Qiang&rft.date=2006-02-01&rft.volume=16&rft.issue=2&rft.spage=197&rft.epage=207&rft.pages=197-207&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.4108706&rft_dat=%3Cproquest_pubme%3E67624854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17476394&rft_id=info:pmid/16365378&rfr_iscdi=true