Defining the mammalian CArGome
Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome...
Gespeichert in:
Veröffentlicht in: | Genome Research 2006-02, Vol.16 (2), p.197-207 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 2 |
container_start_page | 197 |
container_title | Genome Research |
container_volume | 16 |
creator | Sun, Qiang Chen, Guang Streb, Jeffrey W Long, Xiaochun Yang, Yumei Stoeckert, Jr, Christian J Miano, Joseph M |
description | Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton. |
doi_str_mv | 10.1101/gr.4108706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1361715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67624854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-7f9508cb27bdbe638b3188e475c7c7c2bb9d61cf33e9ff1f7d5293f456be9dec3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotlY3PkDpyoUwNWdy3wilahUKbnQdkplkOjKXmkwF394pHbys5CzOgfPx8_MhdAl4DoDhpghzClgKzI_QGBhVCaNcHfc3ljJRmMEIncX4hjEmVMpTNAJOOCNCjtH0zvmyKZti1m3crDZ1barSNLPlIqza2p2jE2-q6C6GPUGvD_cvy8dk_bx6Wi7WSUYF6RLhFcMys6mwuXWcSEtASkcFy0Q_qbUq55B5QpzyHrzIWaqIp4xbp3KXkQm6PeRud7Z2eeaaLphKb0NZm_CpW1Pqv5-m3Oii_dBAOAhgfcDVEBDa952Lna7LmLmqMo1rd1FzwVMqGf0XBEEFJ2oPXh_ALLQxBue_2wDWe--6CHrw3sPT3_1_0EE0-QJam31w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17476394</pqid></control><display><type>article</type><title>Defining the mammalian CArGome</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sun, Qiang ; Chen, Guang ; Streb, Jeffrey W ; Long, Xiaochun ; Yang, Yumei ; Stoeckert, Jr, Christian J ; Miano, Joseph M</creator><creatorcontrib>Sun, Qiang ; Chen, Guang ; Streb, Jeffrey W ; Long, Xiaochun ; Yang, Yumei ; Stoeckert, Jr, Christian J ; Miano, Joseph M</creatorcontrib><description>Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gr.4108706</identifier><identifier>PMID: 16365378</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Cell Line ; Cloning, Molecular - methods ; Cytoskeleton - genetics ; Gene Expression Regulation - genetics ; Genome, Human - genetics ; Humans ; Letters ; Mice ; Serum Response Element - genetics ; Serum Response Factor - genetics ; Transcription, Genetic - genetics</subject><ispartof>Genome Research, 2006-02, Vol.16 (2), p.197-207</ispartof><rights>Copyright © 2006, Cold Spring Harbor Laboratory Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-7f9508cb27bdbe638b3188e475c7c7c2bb9d61cf33e9ff1f7d5293f456be9dec3</citedby><cites>FETCH-LOGICAL-c473t-7f9508cb27bdbe638b3188e475c7c7c2bb9d61cf33e9ff1f7d5293f456be9dec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361715/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361715/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16365378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Streb, Jeffrey W</creatorcontrib><creatorcontrib>Long, Xiaochun</creatorcontrib><creatorcontrib>Yang, Yumei</creatorcontrib><creatorcontrib>Stoeckert, Jr, Christian J</creatorcontrib><creatorcontrib>Miano, Joseph M</creatorcontrib><title>Defining the mammalian CArGome</title><title>Genome Research</title><addtitle>Genome Res</addtitle><description>Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Cloning, Molecular - methods</subject><subject>Cytoskeleton - genetics</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genome, Human - genetics</subject><subject>Humans</subject><subject>Letters</subject><subject>Mice</subject><subject>Serum Response Element - genetics</subject><subject>Serum Response Factor - genetics</subject><subject>Transcription, Genetic - genetics</subject><issn>1088-9051</issn><issn>1549-5469</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKAzEUhoMotlY3PkDpyoUwNWdy3wilahUKbnQdkplkOjKXmkwF394pHbys5CzOgfPx8_MhdAl4DoDhpghzClgKzI_QGBhVCaNcHfc3ljJRmMEIncX4hjEmVMpTNAJOOCNCjtH0zvmyKZti1m3crDZ1barSNLPlIqza2p2jE2-q6C6GPUGvD_cvy8dk_bx6Wi7WSUYF6RLhFcMys6mwuXWcSEtASkcFy0Q_qbUq55B5QpzyHrzIWaqIp4xbp3KXkQm6PeRud7Z2eeaaLphKb0NZm_CpW1Pqv5-m3Oii_dBAOAhgfcDVEBDa952Lna7LmLmqMo1rd1FzwVMqGf0XBEEFJ2oPXh_ALLQxBue_2wDWe--6CHrw3sPT3_1_0EE0-QJam31w</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Sun, Qiang</creator><creator>Chen, Guang</creator><creator>Streb, Jeffrey W</creator><creator>Long, Xiaochun</creator><creator>Yang, Yumei</creator><creator>Stoeckert, Jr, Christian J</creator><creator>Miano, Joseph M</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060201</creationdate><title>Defining the mammalian CArGome</title><author>Sun, Qiang ; Chen, Guang ; Streb, Jeffrey W ; Long, Xiaochun ; Yang, Yumei ; Stoeckert, Jr, Christian J ; Miano, Joseph M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-7f9508cb27bdbe638b3188e475c7c7c2bb9d61cf33e9ff1f7d5293f456be9dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Cloning, Molecular - methods</topic><topic>Cytoskeleton - genetics</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genome, Human - genetics</topic><topic>Humans</topic><topic>Letters</topic><topic>Mice</topic><topic>Serum Response Element - genetics</topic><topic>Serum Response Factor - genetics</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Chen, Guang</creatorcontrib><creatorcontrib>Streb, Jeffrey W</creatorcontrib><creatorcontrib>Long, Xiaochun</creatorcontrib><creatorcontrib>Yang, Yumei</creatorcontrib><creatorcontrib>Stoeckert, Jr, Christian J</creatorcontrib><creatorcontrib>Miano, Joseph M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qiang</au><au>Chen, Guang</au><au>Streb, Jeffrey W</au><au>Long, Xiaochun</au><au>Yang, Yumei</au><au>Stoeckert, Jr, Christian J</au><au>Miano, Joseph M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the mammalian CArGome</atitle><jtitle>Genome Research</jtitle><addtitle>Genome Res</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>197</spage><epage>207</epage><pages>197-207</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><eissn>1549-5477</eissn><abstract>Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>16365378</pmid><doi>10.1101/gr.4108706</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome Research, 2006-02, Vol.16 (2), p.197-207 |
issn | 1088-9051 1549-5469 1549-5477 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1361715 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Cell Line Cloning, Molecular - methods Cytoskeleton - genetics Gene Expression Regulation - genetics Genome, Human - genetics Humans Letters Mice Serum Response Element - genetics Serum Response Factor - genetics Transcription, Genetic - genetics |
title | Defining the mammalian CArGome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20mammalian%20CArGome&rft.jtitle=Genome%20Research&rft.au=Sun,%20Qiang&rft.date=2006-02-01&rft.volume=16&rft.issue=2&rft.spage=197&rft.epage=207&rft.pages=197-207&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.4108706&rft_dat=%3Cproquest_pubme%3E67624854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17476394&rft_id=info:pmid/16365378&rfr_iscdi=true |