Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding

Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2002-11, Vol.30 (21), p.4751-4760
Hauptverfasser: Nobles, Kelly N., Yarian, Connie S., Liu, Guihua, Guenther, Richard H., Agris, Paul F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4760
container_issue 21
container_start_page 4751
container_title Nucleic acids research
container_volume 30
creator Nobles, Kelly N.
Yarian, Connie S.
Liu, Guihua
Guenther, Richard H.
Agris, Paul F.
description Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T‐half molecules (nucleosides 40–72) with the corresponding unmodified D‐half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T‐half folding interactions with the D‐half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT54,Ψ55 = 11 ± 3 µM) significantly lower than that of the unmodified T‐half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half‐molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.
doi_str_mv 10.1093/nar/gkf595
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_135809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72648831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-59eb7951665f15ee9e655ec3bc314344c66c7e25a14508de71edecbdaed2d30f3</originalsourceid><addsrcrecordid>eNpVkM1OGzEQx60KVELopQ9Q7YkDaIu9_tj1gUMUUVIpgISoVPViOfbsxmRjB3sXlVsfoc_YJ2GrRHycZqT5zcxfP4Q-E_yVYEnPvI5nzarmkn9AI0JFkTMpij00whTznGBWHaDDlO4xJoxw9hEdkIJhyYQYoauZa5btU2aCTxAfwWbrYF3thsb3poWQnIWUOV-3PXgD2VVTnP7789fCBrwF32Xd7fUkq0NrnW-O0H6t2wSfdnWMfny7uJvO8vnN5ffpZJ4bymiXcwmLUnIiBK8JB5AgOAdDF4YSRhkzQpgSCq4J47iyUBKwYBZWgy0sxTUdo_Pt3U2_WIM1Q46oW7WJbq3jkwraqfcT75aqCY-KUF4NysboeLcfw0MPqVNrlwy0rfYQ-qTKQrCqomQAT7agiSGlCPXLD4LVf_lqkK-28gf4y9tUr-jO9gDkW8ClDn6_zHVcKVHSkqvZz19KzvHt5fxaKk6fATb1kw0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72648831</pqid></control><display><type>article</type><title>Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nobles, Kelly N. ; Yarian, Connie S. ; Liu, Guihua ; Guenther, Richard H. ; Agris, Paul F.</creator><creatorcontrib>Nobles, Kelly N. ; Yarian, Connie S. ; Liu, Guihua ; Guenther, Richard H. ; Agris, Paul F.</creatorcontrib><description>Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T‐half molecules (nucleosides 40–72) with the corresponding unmodified D‐half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T‐half folding interactions with the D‐half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT54,Ψ55 = 11 ± 3 µM) significantly lower than that of the unmodified T‐half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half‐molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkf595</identifier><identifier>PMID: 12409466</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Base Sequence ; Electrophoretic Mobility Shift Assay ; Hydrogen Bonding ; Lead - pharmacology ; Magnesium - pharmacology ; Models, Molecular ; Nucleic Acid Conformation - drug effects ; Nucleosides - chemistry ; Nucleosides - metabolism ; Ribonuclease T1 - metabolism ; RNA Stability - drug effects ; RNA, Fungal - chemistry ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Transfer, Phe - chemistry ; RNA, Transfer, Phe - genetics ; RNA, Transfer, Phe - metabolism ; Thermodynamics</subject><ispartof>Nucleic acids research, 2002-11, Vol.30 (21), p.4751-4760</ispartof><rights>Copyright © 2002 Oxford University Press 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-59eb7951665f15ee9e655ec3bc314344c66c7e25a14508de71edecbdaed2d30f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC135809/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC135809/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12409466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nobles, Kelly N.</creatorcontrib><creatorcontrib>Yarian, Connie S.</creatorcontrib><creatorcontrib>Liu, Guihua</creatorcontrib><creatorcontrib>Guenther, Richard H.</creatorcontrib><creatorcontrib>Agris, Paul F.</creatorcontrib><title>Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T‐half molecules (nucleosides 40–72) with the corresponding unmodified D‐half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T‐half folding interactions with the D‐half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT54,Ψ55 = 11 ± 3 µM) significantly lower than that of the unmodified T‐half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half‐molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.</description><subject>Base Sequence</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Hydrogen Bonding</subject><subject>Lead - pharmacology</subject><subject>Magnesium - pharmacology</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation - drug effects</subject><subject>Nucleosides - chemistry</subject><subject>Nucleosides - metabolism</subject><subject>Ribonuclease T1 - metabolism</subject><subject>RNA Stability - drug effects</subject><subject>RNA, Fungal - chemistry</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Transfer, Phe - chemistry</subject><subject>RNA, Transfer, Phe - genetics</subject><subject>RNA, Transfer, Phe - metabolism</subject><subject>Thermodynamics</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1OGzEQx60KVELopQ9Q7YkDaIu9_tj1gUMUUVIpgISoVPViOfbsxmRjB3sXlVsfoc_YJ2GrRHycZqT5zcxfP4Q-E_yVYEnPvI5nzarmkn9AI0JFkTMpij00whTznGBWHaDDlO4xJoxw9hEdkIJhyYQYoauZa5btU2aCTxAfwWbrYF3thsb3poWQnIWUOV-3PXgD2VVTnP7789fCBrwF32Xd7fUkq0NrnW-O0H6t2wSfdnWMfny7uJvO8vnN5ffpZJ4bymiXcwmLUnIiBK8JB5AgOAdDF4YSRhkzQpgSCq4J47iyUBKwYBZWgy0sxTUdo_Pt3U2_WIM1Q46oW7WJbq3jkwraqfcT75aqCY-KUF4NysboeLcfw0MPqVNrlwy0rfYQ-qTKQrCqomQAT7agiSGlCPXLD4LVf_lqkK-28gf4y9tUr-jO9gDkW8ClDn6_zHVcKVHSkqvZz19KzvHt5fxaKk6fATb1kw0</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Nobles, Kelly N.</creator><creator>Yarian, Connie S.</creator><creator>Liu, Guihua</creator><creator>Guenther, Richard H.</creator><creator>Agris, Paul F.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021101</creationdate><title>Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding</title><author>Nobles, Kelly N. ; Yarian, Connie S. ; Liu, Guihua ; Guenther, Richard H. ; Agris, Paul F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-59eb7951665f15ee9e655ec3bc314344c66c7e25a14508de71edecbdaed2d30f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Base Sequence</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Hydrogen Bonding</topic><topic>Lead - pharmacology</topic><topic>Magnesium - pharmacology</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation - drug effects</topic><topic>Nucleosides - chemistry</topic><topic>Nucleosides - metabolism</topic><topic>Ribonuclease T1 - metabolism</topic><topic>RNA Stability - drug effects</topic><topic>RNA, Fungal - chemistry</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Transfer, Phe - chemistry</topic><topic>RNA, Transfer, Phe - genetics</topic><topic>RNA, Transfer, Phe - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nobles, Kelly N.</creatorcontrib><creatorcontrib>Yarian, Connie S.</creatorcontrib><creatorcontrib>Liu, Guihua</creatorcontrib><creatorcontrib>Guenther, Richard H.</creatorcontrib><creatorcontrib>Agris, Paul F.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nobles, Kelly N.</au><au>Yarian, Connie S.</au><au>Liu, Guihua</au><au>Guenther, Richard H.</au><au>Agris, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2002-11-01</date><risdate>2002</risdate><volume>30</volume><issue>21</issue><spage>4751</spage><epage>4760</epage><pages>4751-4760</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T‐half molecules (nucleosides 40–72) with the corresponding unmodified D‐half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T‐half folding interactions with the D‐half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT54,Ψ55 = 11 ± 3 µM) significantly lower than that of the unmodified T‐half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half‐molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12409466</pmid><doi>10.1093/nar/gkf595</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2002-11, Vol.30 (21), p.4751-4760
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_135809
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Base Sequence
Electrophoretic Mobility Shift Assay
Hydrogen Bonding
Lead - pharmacology
Magnesium - pharmacology
Models, Molecular
Nucleic Acid Conformation - drug effects
Nucleosides - chemistry
Nucleosides - metabolism
Ribonuclease T1 - metabolism
RNA Stability - drug effects
RNA, Fungal - chemistry
RNA, Fungal - genetics
RNA, Fungal - metabolism
RNA, Transfer, Phe - chemistry
RNA, Transfer, Phe - genetics
RNA, Transfer, Phe - metabolism
Thermodynamics
title Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20conserved%20modified%20nucleosides%20influence%20Mg2+%E2%80%90dependent%20tRNA%20folding&rft.jtitle=Nucleic%20acids%20research&rft.au=Nobles,%20Kelly%20N.&rft.date=2002-11-01&rft.volume=30&rft.issue=21&rft.spage=4751&rft.epage=4760&rft.pages=4751-4760&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkf595&rft_dat=%3Cproquest_pubme%3E72648831%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72648831&rft_id=info:pmid/12409466&rfr_iscdi=true