Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding
Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a r...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2002-11, Vol.30 (21), p.4751-4760 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4760 |
---|---|
container_issue | 21 |
container_start_page | 4751 |
container_title | Nucleic acids research |
container_volume | 30 |
creator | Nobles, Kelly N. Yarian, Connie S. Liu, Guihua Guenther, Richard H. Agris, Paul F. |
description | Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T‐half molecules (nucleosides 40–72) with the corresponding unmodified D‐half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T‐half folding interactions with the D‐half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT54,Ψ55 = 11 ± 3 µM) significantly lower than that of the unmodified T‐half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half‐molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway. |
doi_str_mv | 10.1093/nar/gkf595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_135809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72648831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-59eb7951665f15ee9e655ec3bc314344c66c7e25a14508de71edecbdaed2d30f3</originalsourceid><addsrcrecordid>eNpVkM1OGzEQx60KVELopQ9Q7YkDaIu9_tj1gUMUUVIpgISoVPViOfbsxmRjB3sXlVsfoc_YJ2GrRHycZqT5zcxfP4Q-E_yVYEnPvI5nzarmkn9AI0JFkTMpij00whTznGBWHaDDlO4xJoxw9hEdkIJhyYQYoauZa5btU2aCTxAfwWbrYF3thsb3poWQnIWUOV-3PXgD2VVTnP7789fCBrwF32Xd7fUkq0NrnW-O0H6t2wSfdnWMfny7uJvO8vnN5ffpZJ4bymiXcwmLUnIiBK8JB5AgOAdDF4YSRhkzQpgSCq4J47iyUBKwYBZWgy0sxTUdo_Pt3U2_WIM1Q46oW7WJbq3jkwraqfcT75aqCY-KUF4NysboeLcfw0MPqVNrlwy0rfYQ-qTKQrCqomQAT7agiSGlCPXLD4LVf_lqkK-28gf4y9tUr-jO9gDkW8ClDn6_zHVcKVHSkqvZz19KzvHt5fxaKk6fATb1kw0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72648831</pqid></control><display><type>article</type><title>Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nobles, Kelly N. ; Yarian, Connie S. ; Liu, Guihua ; Guenther, Richard H. ; Agris, Paul F.</creator><creatorcontrib>Nobles, Kelly N. ; Yarian, Connie S. ; Liu, Guihua ; Guenther, Richard H. ; Agris, Paul F.</creatorcontrib><description>Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T‐half molecules (nucleosides 40–72) with the corresponding unmodified D‐half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T‐half folding interactions with the D‐half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT54,Ψ55 = 11 ± 3 µM) significantly lower than that of the unmodified T‐half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half‐molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkf595</identifier><identifier>PMID: 12409466</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Base Sequence ; Electrophoretic Mobility Shift Assay ; Hydrogen Bonding ; Lead - pharmacology ; Magnesium - pharmacology ; Models, Molecular ; Nucleic Acid Conformation - drug effects ; Nucleosides - chemistry ; Nucleosides - metabolism ; Ribonuclease T1 - metabolism ; RNA Stability - drug effects ; RNA, Fungal - chemistry ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Transfer, Phe - chemistry ; RNA, Transfer, Phe - genetics ; RNA, Transfer, Phe - metabolism ; Thermodynamics</subject><ispartof>Nucleic acids research, 2002-11, Vol.30 (21), p.4751-4760</ispartof><rights>Copyright © 2002 Oxford University Press 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-59eb7951665f15ee9e655ec3bc314344c66c7e25a14508de71edecbdaed2d30f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC135809/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC135809/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12409466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nobles, Kelly N.</creatorcontrib><creatorcontrib>Yarian, Connie S.</creatorcontrib><creatorcontrib>Liu, Guihua</creatorcontrib><creatorcontrib>Guenther, Richard H.</creatorcontrib><creatorcontrib>Agris, Paul F.</creatorcontrib><title>Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T‐half molecules (nucleosides 40–72) with the corresponding unmodified D‐half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T‐half folding interactions with the D‐half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT54,Ψ55 = 11 ± 3 µM) significantly lower than that of the unmodified T‐half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half‐molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.</description><subject>Base Sequence</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Hydrogen Bonding</subject><subject>Lead - pharmacology</subject><subject>Magnesium - pharmacology</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation - drug effects</subject><subject>Nucleosides - chemistry</subject><subject>Nucleosides - metabolism</subject><subject>Ribonuclease T1 - metabolism</subject><subject>RNA Stability - drug effects</subject><subject>RNA, Fungal - chemistry</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Transfer, Phe - chemistry</subject><subject>RNA, Transfer, Phe - genetics</subject><subject>RNA, Transfer, Phe - metabolism</subject><subject>Thermodynamics</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1OGzEQx60KVELopQ9Q7YkDaIu9_tj1gUMUUVIpgISoVPViOfbsxmRjB3sXlVsfoc_YJ2GrRHycZqT5zcxfP4Q-E_yVYEnPvI5nzarmkn9AI0JFkTMpij00whTznGBWHaDDlO4xJoxw9hEdkIJhyYQYoauZa5btU2aCTxAfwWbrYF3thsb3poWQnIWUOV-3PXgD2VVTnP7789fCBrwF32Xd7fUkq0NrnW-O0H6t2wSfdnWMfny7uJvO8vnN5ffpZJ4bymiXcwmLUnIiBK8JB5AgOAdDF4YSRhkzQpgSCq4J47iyUBKwYBZWgy0sxTUdo_Pt3U2_WIM1Q46oW7WJbq3jkwraqfcT75aqCY-KUF4NysboeLcfw0MPqVNrlwy0rfYQ-qTKQrCqomQAT7agiSGlCPXLD4LVf_lqkK-28gf4y9tUr-jO9gDkW8ClDn6_zHVcKVHSkqvZz19KzvHt5fxaKk6fATb1kw0</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Nobles, Kelly N.</creator><creator>Yarian, Connie S.</creator><creator>Liu, Guihua</creator><creator>Guenther, Richard H.</creator><creator>Agris, Paul F.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021101</creationdate><title>Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding</title><author>Nobles, Kelly N. ; Yarian, Connie S. ; Liu, Guihua ; Guenther, Richard H. ; Agris, Paul F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-59eb7951665f15ee9e655ec3bc314344c66c7e25a14508de71edecbdaed2d30f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Base Sequence</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Hydrogen Bonding</topic><topic>Lead - pharmacology</topic><topic>Magnesium - pharmacology</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation - drug effects</topic><topic>Nucleosides - chemistry</topic><topic>Nucleosides - metabolism</topic><topic>Ribonuclease T1 - metabolism</topic><topic>RNA Stability - drug effects</topic><topic>RNA, Fungal - chemistry</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Transfer, Phe - chemistry</topic><topic>RNA, Transfer, Phe - genetics</topic><topic>RNA, Transfer, Phe - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nobles, Kelly N.</creatorcontrib><creatorcontrib>Yarian, Connie S.</creatorcontrib><creatorcontrib>Liu, Guihua</creatorcontrib><creatorcontrib>Guenther, Richard H.</creatorcontrib><creatorcontrib>Agris, Paul F.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nobles, Kelly N.</au><au>Yarian, Connie S.</au><au>Liu, Guihua</au><au>Guenther, Richard H.</au><au>Agris, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2002-11-01</date><risdate>2002</risdate><volume>30</volume><issue>21</issue><spage>4751</spage><epage>4760</epage><pages>4751-4760</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T‐half molecules (nucleosides 40–72) with the corresponding unmodified D‐half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T‐half folding interactions with the D‐half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT54,Ψ55 = 11 ± 3 µM) significantly lower than that of the unmodified T‐half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half‐molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12409466</pmid><doi>10.1093/nar/gkf595</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2002-11, Vol.30 (21), p.4751-4760 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_135809 |
source | MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Base Sequence Electrophoretic Mobility Shift Assay Hydrogen Bonding Lead - pharmacology Magnesium - pharmacology Models, Molecular Nucleic Acid Conformation - drug effects Nucleosides - chemistry Nucleosides - metabolism Ribonuclease T1 - metabolism RNA Stability - drug effects RNA, Fungal - chemistry RNA, Fungal - genetics RNA, Fungal - metabolism RNA, Transfer, Phe - chemistry RNA, Transfer, Phe - genetics RNA, Transfer, Phe - metabolism Thermodynamics |
title | Highly conserved modified nucleosides influence Mg2+‐dependent tRNA folding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20conserved%20modified%20nucleosides%20influence%20Mg2+%E2%80%90dependent%20tRNA%20folding&rft.jtitle=Nucleic%20acids%20research&rft.au=Nobles,%20Kelly%20N.&rft.date=2002-11-01&rft.volume=30&rft.issue=21&rft.spage=4751&rft.epage=4760&rft.pages=4751-4760&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkf595&rft_dat=%3Cproquest_pubme%3E72648831%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72648831&rft_id=info:pmid/12409466&rfr_iscdi=true |