Ammonia pulses and metabolic oscillations guide yeast colony development

On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the producti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2002-11, Vol.13 (11), p.3901-3914
Hauptverfasser: Palková, Zdena, Devaux, Frédéric, Icicová, Markéta, Mináriková, Lucie, Le Crom, Stéphane, Jacq, Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3914
container_issue 11
container_start_page 3901
container_title Molecular biology of the cell
container_volume 13
creator Palková, Zdena
Devaux, Frédéric
Icicová, Markéta
Mináriková, Lucie
Le Crom, Stéphane
Jacq, Claude
description On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.
doi_str_mv 10.1091/mbc.E01-12-0149
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_133602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72670132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-b9f4a05f5f116766806de085cfce3f2c53e93e784325bce6c3fa4704a92fb3243</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qqHy0595QTpV6CHj8lfjAYYUoi7QSFzhbjjMGV0m8xMlK-9_j1a5K4cLJluf35s34EfIT6AVQDZd94y5uKJTASgpCfyEnoLkuhazV13ynUpcgmTgmpyn9pRkRqvpGjoEJpmsuTshy0fdxCLZYz13CVNihLXqcbBO74IqYXOg6O4U4pOJpDi0WW7RpKlzs4rAtWtxgF9c9DtN3cuRtbvHjcJ6Rxz83D9fLcnV_e3e9WJVO6moqG-2FpdJLD6AqpWqqWqS1dN4h98xJjppjVQvOZONQOe6tqKiwmvmGM8HPyNW-73puemxdth5tZ9Zj6O24NdEG874yhGfzFDcGOFeUZf3vvf75g2q5WJndG2V1pTO6gcz-OniN8WXGNJk-JIf5RwaMczIVUxUFzj4FQau8ktiBl3vQjTGlEf2_EYCaXaImJ2qQggFmdolmxfn_-77xhwj5K_4Vnbo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19678442</pqid></control><display><type>article</type><title>Ammonia pulses and metabolic oscillations guide yeast colony development</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Palková, Zdena ; Devaux, Frédéric ; Icicová, Markéta ; Mináriková, Lucie ; Le Crom, Stéphane ; Jacq, Claude</creator><contributor>Devreotes, Peter N.</contributor><creatorcontrib>Palková, Zdena ; Devaux, Frédéric ; Icicová, Markéta ; Mináriková, Lucie ; Le Crom, Stéphane ; Jacq, Claude ; Devreotes, Peter N.</creatorcontrib><description>On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E01-12-0149</identifier><identifier>PMID: 12429834</identifier><language>eng</language><publisher>United States: American Society for Cell Biology</publisher><subject>Amino Acid Sequence ; Amino Acids ; Amino Acids - metabolism ; Ammonia ; Ammonia - metabolism ; Biochemistry, Molecular Biology ; Energy Metabolism ; Fatty Acids ; Fatty Acids - metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Genomics ; Hydrogen-Ion Concentration ; Life Sciences ; Membrane Transport Proteins ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - classification ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Models, Biological ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Oxidative Phosphorylation ; Peroxisomes ; Peroxisomes - metabolism ; Phylogeny ; Quantitative Methods ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Alignment</subject><ispartof>Molecular biology of the cell, 2002-11, Vol.13 (11), p.3901-3914</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2002, The American Society for Cell Biology 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-b9f4a05f5f116766806de085cfce3f2c53e93e784325bce6c3fa4704a92fb3243</citedby><cites>FETCH-LOGICAL-c597t-b9f4a05f5f116766806de085cfce3f2c53e93e784325bce6c3fa4704a92fb3243</cites><orcidid>0000-0002-0039-9096 ; 0000-0002-0534-7797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC133602/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC133602/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12429834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02879360$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Devreotes, Peter N.</contributor><creatorcontrib>Palková, Zdena</creatorcontrib><creatorcontrib>Devaux, Frédéric</creatorcontrib><creatorcontrib>Icicová, Markéta</creatorcontrib><creatorcontrib>Mináriková, Lucie</creatorcontrib><creatorcontrib>Le Crom, Stéphane</creatorcontrib><creatorcontrib>Jacq, Claude</creatorcontrib><title>Ammonia pulses and metabolic oscillations guide yeast colony development</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.</description><subject>Amino Acid Sequence</subject><subject>Amino Acids</subject><subject>Amino Acids - metabolism</subject><subject>Ammonia</subject><subject>Ammonia - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Energy Metabolism</subject><subject>Fatty Acids</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genomics</subject><subject>Hydrogen-Ion Concentration</subject><subject>Life Sciences</subject><subject>Membrane Transport Proteins</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - classification</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Oxidative Phosphorylation</subject><subject>Peroxisomes</subject><subject>Peroxisomes - metabolism</subject><subject>Phylogeny</subject><subject>Quantitative Methods</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Alignment</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1P3DAQxa2qqHy0595QTpV6CHj8lfjAYYUoi7QSFzhbjjMGV0m8xMlK-9_j1a5K4cLJluf35s34EfIT6AVQDZd94y5uKJTASgpCfyEnoLkuhazV13ynUpcgmTgmpyn9pRkRqvpGjoEJpmsuTshy0fdxCLZYz13CVNihLXqcbBO74IqYXOg6O4U4pOJpDi0WW7RpKlzs4rAtWtxgF9c9DtN3cuRtbvHjcJ6Rxz83D9fLcnV_e3e9WJVO6moqG-2FpdJLD6AqpWqqWqS1dN4h98xJjppjVQvOZONQOe6tqKiwmvmGM8HPyNW-73puemxdth5tZ9Zj6O24NdEG874yhGfzFDcGOFeUZf3vvf75g2q5WJndG2V1pTO6gcz-OniN8WXGNJk-JIf5RwaMczIVUxUFzj4FQau8ktiBl3vQjTGlEf2_EYCaXaImJ2qQggFmdolmxfn_-77xhwj5K_4Vnbo</recordid><startdate>200211</startdate><enddate>200211</enddate><creator>Palková, Zdena</creator><creator>Devaux, Frédéric</creator><creator>Icicová, Markéta</creator><creator>Mináriková, Lucie</creator><creator>Le Crom, Stéphane</creator><creator>Jacq, Claude</creator><general>American Society for Cell Biology</general><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0039-9096</orcidid><orcidid>https://orcid.org/0000-0002-0534-7797</orcidid></search><sort><creationdate>200211</creationdate><title>Ammonia pulses and metabolic oscillations guide yeast colony development</title><author>Palková, Zdena ; Devaux, Frédéric ; Icicová, Markéta ; Mináriková, Lucie ; Le Crom, Stéphane ; Jacq, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-b9f4a05f5f116766806de085cfce3f2c53e93e784325bce6c3fa4704a92fb3243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acids</topic><topic>Amino Acids - metabolism</topic><topic>Ammonia</topic><topic>Ammonia - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Energy Metabolism</topic><topic>Fatty Acids</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genomics</topic><topic>Hydrogen-Ion Concentration</topic><topic>Life Sciences</topic><topic>Membrane Transport Proteins</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - classification</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Oxidative Phosphorylation</topic><topic>Peroxisomes</topic><topic>Peroxisomes - metabolism</topic><topic>Phylogeny</topic><topic>Quantitative Methods</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palková, Zdena</creatorcontrib><creatorcontrib>Devaux, Frédéric</creatorcontrib><creatorcontrib>Icicová, Markéta</creatorcontrib><creatorcontrib>Mináriková, Lucie</creatorcontrib><creatorcontrib>Le Crom, Stéphane</creatorcontrib><creatorcontrib>Jacq, Claude</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palková, Zdena</au><au>Devaux, Frédéric</au><au>Icicová, Markéta</au><au>Mináriková, Lucie</au><au>Le Crom, Stéphane</au><au>Jacq, Claude</au><au>Devreotes, Peter N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia pulses and metabolic oscillations guide yeast colony development</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2002-11</date><risdate>2002</risdate><volume>13</volume><issue>11</issue><spage>3901</spage><epage>3914</epage><pages>3901-3914</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.</abstract><cop>United States</cop><pub>American Society for Cell Biology</pub><pmid>12429834</pmid><doi>10.1091/mbc.E01-12-0149</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0039-9096</orcidid><orcidid>https://orcid.org/0000-0002-0534-7797</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2002-11, Vol.13 (11), p.3901-3914
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_133602
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino Acids
Amino Acids - metabolism
Ammonia
Ammonia - metabolism
Biochemistry, Molecular Biology
Energy Metabolism
Fatty Acids
Fatty Acids - metabolism
Gene Expression Profiling
Gene Expression Regulation, Fungal
Genomics
Hydrogen-Ion Concentration
Life Sciences
Membrane Transport Proteins
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - classification
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Models, Biological
Molecular Sequence Data
Oligonucleotide Array Sequence Analysis
Oxidative Phosphorylation
Peroxisomes
Peroxisomes - metabolism
Phylogeny
Quantitative Methods
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Sequence Alignment
title Ammonia pulses and metabolic oscillations guide yeast colony development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20pulses%20and%20metabolic%20oscillations%20guide%20yeast%20colony%20development&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Palkov%C3%A1,%20Zdena&rft.date=2002-11&rft.volume=13&rft.issue=11&rft.spage=3901&rft.epage=3914&rft.pages=3901-3914&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E01-12-0149&rft_dat=%3Cproquest_pubme%3E72670132%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19678442&rft_id=info:pmid/12429834&rfr_iscdi=true