Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes

Rotating-frame relaxation experiments have been carried out on 19F-labeled dimyristoylphosphatidylcholine model membranes. The lipids are labeled with a single CF2 group in the 4-, 8-, or 12-position of the 2-acyl chain. Both oriented lipid bilayers and multilamellar liposomes have been investigated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1988-07, Vol.54 (1), p.81-95
Hauptverfasser: Peng, Z.Y., Simplaceanu, V., Lowe, I.J., Ho, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 81
container_title Biophysical journal
container_volume 54
creator Peng, Z.Y.
Simplaceanu, V.
Lowe, I.J.
Ho, C.
description Rotating-frame relaxation experiments have been carried out on 19F-labeled dimyristoylphosphatidylcholine model membranes. The lipids are labeled with a single CF2 group in the 4-, 8-, or 12-position of the 2-acyl chain. Both oriented lipid bilayers and multilamellar liposomes have been investigated. The relaxation rate has been measured as a function of the locking-field strength, the sample orientation, the label position, and the temperature. Our results have confirmed that extensive slow motions exist in the bilayer and dominate the low-frequency relaxation. The relaxation rate is quite sensitive to the label position. However, many other features of the relaxation are very similar for all three lipid isomers. The temperature dependence of the relaxation rate for the multilamellar liposomes differs from the oriented bilayers, which may imply that the motions are also different. To fit our data, a working model consisting of a superposition of an anisotropic reorientation term and a director fluctuation term has been proposed. We have also verified that almost all of the relaxation process is caused by modulations of the intramolecular interactions. Based on this, a view of the slow motions at a molecular level is discussed in this paper.
doi_str_mv 10.1016/S0006-3495(88)82933-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1330318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349588829333</els_id><sourcerecordid>15280926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-6b710be2f04e4b564c8440148918eb3f12c18c6bb31dbe9fa20f329a369bebe63</originalsourceid><addsrcrecordid>eNqFkUuLFTEQhYMo43X0Jwz0QkQXrZVH56Y3DjL4ggHBx1JCkq7MRNKda9I96r83Pfdy0dUsQqDOVydVOYScUXhJgcpXXwBAtlz03XOlXijWc97ye2RDO8FaACXvk80ReUgelfIDgLIO6Ak54YJK4GJDvn9Os5nDdNX6bEZsMkbzuxbS1JR5GQKWJvmmxPSrGdNaLk2YGh-XlMNkZhya3XUq9cSwC0NlBozNiKPNZsLymDzwJhZ8crhPybd3b79efGgvP73_ePHmsnUdY3Mr7ZaCReZBoLCdFE4JAVSoniq03FPmqHLSWk4Hi703DDxnveGyt2hR8lPyeu-7W-yIg8NpzibqXQ6jyX90MkH_r0zhWl-lG005B05VNXh2MMjp54Jl1mMoDmOsW6Sl6K3ifc-EuBOkHVPQs3Wkbg-6nErJ6I_TUNBrgPo2QL2mo5XStwFqXvvO_l3l2HVIrOpPD7opzsSa2uRCOWJbBtVoff58j2H99puAWRcXcHI4hIxu1kMKdwzyF9Afujk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15280926</pqid></control><display><type>article</type><title>Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Peng, Z.Y. ; Simplaceanu, V. ; Lowe, I.J. ; Ho, C.</creator><creatorcontrib>Peng, Z.Y. ; Simplaceanu, V. ; Lowe, I.J. ; Ho, C.</creatorcontrib><description>Rotating-frame relaxation experiments have been carried out on 19F-labeled dimyristoylphosphatidylcholine model membranes. The lipids are labeled with a single CF2 group in the 4-, 8-, or 12-position of the 2-acyl chain. Both oriented lipid bilayers and multilamellar liposomes have been investigated. The relaxation rate has been measured as a function of the locking-field strength, the sample orientation, the label position, and the temperature. Our results have confirmed that extensive slow motions exist in the bilayer and dominate the low-frequency relaxation. The relaxation rate is quite sensitive to the label position. However, many other features of the relaxation are very similar for all three lipid isomers. The temperature dependence of the relaxation rate for the multilamellar liposomes differs from the oriented bilayers, which may imply that the motions are also different. To fit our data, a working model consisting of a superposition of an anisotropic reorientation term and a director fluctuation term has been proposed. We have also verified that almost all of the relaxation process is caused by modulations of the intramolecular interactions. Based on this, a view of the slow motions at a molecular level is discussed in this paper.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(88)82933-3</identifier><identifier>PMID: 3416034</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Artificial membranes and reconstituted systems ; Biological and medical sciences ; Dimyristoylphosphatidylcholine ; Fluorine ; Fundamental and applied biological sciences. Psychology ; Lipid Bilayers ; Magnetic Resonance Spectroscopy - methods ; Mathematics ; Membrane physicochemistry ; Models, Biological ; Molecular biophysics ; Molecular Conformation</subject><ispartof>Biophysical journal, 1988-07, Vol.54 (1), p.81-95</ispartof><rights>1988 The Biophysical Society</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-6b710be2f04e4b564c8440148918eb3f12c18c6bb31dbe9fa20f329a369bebe63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1330318/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(88)82933-3$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7202936$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3416034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Z.Y.</creatorcontrib><creatorcontrib>Simplaceanu, V.</creatorcontrib><creatorcontrib>Lowe, I.J.</creatorcontrib><creatorcontrib>Ho, C.</creatorcontrib><title>Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Rotating-frame relaxation experiments have been carried out on 19F-labeled dimyristoylphosphatidylcholine model membranes. The lipids are labeled with a single CF2 group in the 4-, 8-, or 12-position of the 2-acyl chain. Both oriented lipid bilayers and multilamellar liposomes have been investigated. The relaxation rate has been measured as a function of the locking-field strength, the sample orientation, the label position, and the temperature. Our results have confirmed that extensive slow motions exist in the bilayer and dominate the low-frequency relaxation. The relaxation rate is quite sensitive to the label position. However, many other features of the relaxation are very similar for all three lipid isomers. The temperature dependence of the relaxation rate for the multilamellar liposomes differs from the oriented bilayers, which may imply that the motions are also different. To fit our data, a working model consisting of a superposition of an anisotropic reorientation term and a director fluctuation term has been proposed. We have also verified that almost all of the relaxation process is caused by modulations of the intramolecular interactions. Based on this, a view of the slow motions at a molecular level is discussed in this paper.</description><subject>Artificial membranes and reconstituted systems</subject><subject>Biological and medical sciences</subject><subject>Dimyristoylphosphatidylcholine</subject><subject>Fluorine</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Lipid Bilayers</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Mathematics</subject><subject>Membrane physicochemistry</subject><subject>Models, Biological</subject><subject>Molecular biophysics</subject><subject>Molecular Conformation</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFTEQhYMo43X0Jwz0QkQXrZVH56Y3DjL4ggHBx1JCkq7MRNKda9I96r83Pfdy0dUsQqDOVydVOYScUXhJgcpXXwBAtlz03XOlXijWc97ye2RDO8FaACXvk80ReUgelfIDgLIO6Ak54YJK4GJDvn9Os5nDdNX6bEZsMkbzuxbS1JR5GQKWJvmmxPSrGdNaLk2YGh-XlMNkZhya3XUq9cSwC0NlBozNiKPNZsLymDzwJhZ8crhPybd3b79efGgvP73_ePHmsnUdY3Mr7ZaCReZBoLCdFE4JAVSoniq03FPmqHLSWk4Hi703DDxnveGyt2hR8lPyeu-7W-yIg8NpzibqXQ6jyX90MkH_r0zhWl-lG005B05VNXh2MMjp54Jl1mMoDmOsW6Sl6K3ifc-EuBOkHVPQs3Wkbg-6nErJ6I_TUNBrgPo2QL2mo5XStwFqXvvO_l3l2HVIrOpPD7opzsSa2uRCOWJbBtVoff58j2H99puAWRcXcHI4hIxu1kMKdwzyF9Afujk</recordid><startdate>19880701</startdate><enddate>19880701</enddate><creator>Peng, Z.Y.</creator><creator>Simplaceanu, V.</creator><creator>Lowe, I.J.</creator><creator>Ho, C.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19880701</creationdate><title>Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes</title><author>Peng, Z.Y. ; Simplaceanu, V. ; Lowe, I.J. ; Ho, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-6b710be2f04e4b564c8440148918eb3f12c18c6bb31dbe9fa20f329a369bebe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Artificial membranes and reconstituted systems</topic><topic>Biological and medical sciences</topic><topic>Dimyristoylphosphatidylcholine</topic><topic>Fluorine</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Lipid Bilayers</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Mathematics</topic><topic>Membrane physicochemistry</topic><topic>Models, Biological</topic><topic>Molecular biophysics</topic><topic>Molecular Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Z.Y.</creatorcontrib><creatorcontrib>Simplaceanu, V.</creatorcontrib><creatorcontrib>Lowe, I.J.</creatorcontrib><creatorcontrib>Ho, C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Z.Y.</au><au>Simplaceanu, V.</au><au>Lowe, I.J.</au><au>Ho, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1988-07-01</date><risdate>1988</risdate><volume>54</volume><issue>1</issue><spage>81</spage><epage>95</epage><pages>81-95</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>Rotating-frame relaxation experiments have been carried out on 19F-labeled dimyristoylphosphatidylcholine model membranes. The lipids are labeled with a single CF2 group in the 4-, 8-, or 12-position of the 2-acyl chain. Both oriented lipid bilayers and multilamellar liposomes have been investigated. The relaxation rate has been measured as a function of the locking-field strength, the sample orientation, the label position, and the temperature. Our results have confirmed that extensive slow motions exist in the bilayer and dominate the low-frequency relaxation. The relaxation rate is quite sensitive to the label position. However, many other features of the relaxation are very similar for all three lipid isomers. The temperature dependence of the relaxation rate for the multilamellar liposomes differs from the oriented bilayers, which may imply that the motions are also different. To fit our data, a working model consisting of a superposition of an anisotropic reorientation term and a director fluctuation term has been proposed. We have also verified that almost all of the relaxation process is caused by modulations of the intramolecular interactions. Based on this, a view of the slow motions at a molecular level is discussed in this paper.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>3416034</pmid><doi>10.1016/S0006-3495(88)82933-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1988-07, Vol.54 (1), p.81-95
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1330318
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central
subjects Artificial membranes and reconstituted systems
Biological and medical sciences
Dimyristoylphosphatidylcholine
Fluorine
Fundamental and applied biological sciences. Psychology
Lipid Bilayers
Magnetic Resonance Spectroscopy - methods
Mathematics
Membrane physicochemistry
Models, Biological
Molecular biophysics
Molecular Conformation
title Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating-frame%20relaxation%20studies%20of%20slow%20motions%20in%20fluorinated%20phospholipid%20model%20membranes&rft.jtitle=Biophysical%20journal&rft.au=Peng,%20Z.Y.&rft.date=1988-07-01&rft.volume=54&rft.issue=1&rft.spage=81&rft.epage=95&rft.pages=81-95&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(88)82933-3&rft_dat=%3Cproquest_pubme%3E15280926%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15280926&rft_id=info:pmid/3416034&rft_els_id=S0006349588829333&rfr_iscdi=true