Grayanotoxin opens Na channels from inside the squid axonal membrane

External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1988-02, Vol.53 (2), p.271-274
Hauptverfasser: Seyama, I., Yamada, K., Kato, R., Masutani, T., Hamada, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 2
container_start_page 271
container_title Biophysical journal
container_volume 53
creator Seyama, I.
Yamada, K.
Kato, R.
Masutani, T.
Hamada, M.
description External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium.
doi_str_mv 10.1016/S0006-3495(88)83088-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1330147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349588830881</els_id><sourcerecordid>15481810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-e631163a91e24883a8936b3ff418ca502c0bdebb88b964fdfe2088688e3747233</originalsourceid><addsrcrecordid>eNqFkU9v1DAUxC1EVbYLH6GSDwjBIdTPzp-XCxUqpVSq4ACcLcd5YY0Se2tnq_bb19tdreDUkw_z82jmDWOnID6CgPrspxCiLlTZVu8RP6ASiAW8YAuoSlkIgfVLtjggr9hJSn-FAFkJOGbHsizbFtoF-3IVzYPxYQ73zvOwJp_4d8PtynhPY-JDDBN3Prme-Lwinm43rufmPngz8ommLhpPr9nRYMZEb_bvkv3-evnr4ltx8-Pq-uLzTWErKeeCagVQK9MCyRJRGWxV3alhKAGtqYS0ouup6xC7ti6HfiCZS9WIpJqykUot2aed73rTTdRb8nM0o15HN5n4oINx-n_Fu5X-E-40KCWgbLLBu71BDLcbSrOeXLI0jrlE2CTdYA4o5fNgPjICgshgtQNtDClFGg5pQOjtTvppJ70dQSPqp51yniU7_bfK4dd-mKy_3esmWTMO-czWpQPWiAoasb3I-Q7LW9Gdo6iTdeQt9S6SnXUf3DNBHgGJja9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15481810</pqid></control><display><type>article</type><title>Grayanotoxin opens Na channels from inside the squid axonal membrane</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Seyama, I. ; Yamada, K. ; Kato, R. ; Masutani, T. ; Hamada, M.</creator><creatorcontrib>Seyama, I. ; Yamada, K. ; Kato, R. ; Masutani, T. ; Hamada, M.</creatorcontrib><description>External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(88)83088-1</identifier><identifier>PMID: 2449919</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Aconitine - pharmacology ; Animals ; Axons - drug effects ; Axons - physiology ; Biological and medical sciences ; Decapodiformes ; Diterpenes - pharmacology ; Fundamental and applied biological sciences. Psychology ; In Vitro Techniques ; Invertebrates ; Ion Channels - drug effects ; Ion Channels - physiology ; Loligo edulis ; Membrane Potentials ; Mollusca ; Physiology. Development ; Sepioteuthis lessoniana ; Toxins, Biological - pharmacology ; Veratridine - pharmacology</subject><ispartof>Biophysical journal, 1988-02, Vol.53 (2), p.271-274</ispartof><rights>1988 The Biophysical Society</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-e631163a91e24883a8936b3ff418ca502c0bdebb88b964fdfe2088688e3747233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1330147/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349588830881$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7051703$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2449919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seyama, I.</creatorcontrib><creatorcontrib>Yamada, K.</creatorcontrib><creatorcontrib>Kato, R.</creatorcontrib><creatorcontrib>Masutani, T.</creatorcontrib><creatorcontrib>Hamada, M.</creatorcontrib><title>Grayanotoxin opens Na channels from inside the squid axonal membrane</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium.</description><subject>Aconitine - pharmacology</subject><subject>Animals</subject><subject>Axons - drug effects</subject><subject>Axons - physiology</subject><subject>Biological and medical sciences</subject><subject>Decapodiformes</subject><subject>Diterpenes - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In Vitro Techniques</subject><subject>Invertebrates</subject><subject>Ion Channels - drug effects</subject><subject>Ion Channels - physiology</subject><subject>Loligo edulis</subject><subject>Membrane Potentials</subject><subject>Mollusca</subject><subject>Physiology. Development</subject><subject>Sepioteuthis lessoniana</subject><subject>Toxins, Biological - pharmacology</subject><subject>Veratridine - pharmacology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAUxC1EVbYLH6GSDwjBIdTPzp-XCxUqpVSq4ACcLcd5YY0Se2tnq_bb19tdreDUkw_z82jmDWOnID6CgPrspxCiLlTZVu8RP6ASiAW8YAuoSlkIgfVLtjggr9hJSn-FAFkJOGbHsizbFtoF-3IVzYPxYQ73zvOwJp_4d8PtynhPY-JDDBN3Prme-Lwinm43rufmPngz8ommLhpPr9nRYMZEb_bvkv3-evnr4ltx8-Pq-uLzTWErKeeCagVQK9MCyRJRGWxV3alhKAGtqYS0ouup6xC7ti6HfiCZS9WIpJqykUot2aed73rTTdRb8nM0o15HN5n4oINx-n_Fu5X-E-40KCWgbLLBu71BDLcbSrOeXLI0jrlE2CTdYA4o5fNgPjICgshgtQNtDClFGg5pQOjtTvppJ70dQSPqp51yniU7_bfK4dd-mKy_3esmWTMO-czWpQPWiAoasb3I-Q7LW9Gdo6iTdeQt9S6SnXUf3DNBHgGJja9E</recordid><startdate>19880201</startdate><enddate>19880201</enddate><creator>Seyama, I.</creator><creator>Yamada, K.</creator><creator>Kato, R.</creator><creator>Masutani, T.</creator><creator>Hamada, M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19880201</creationdate><title>Grayanotoxin opens Na channels from inside the squid axonal membrane</title><author>Seyama, I. ; Yamada, K. ; Kato, R. ; Masutani, T. ; Hamada, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-e631163a91e24883a8936b3ff418ca502c0bdebb88b964fdfe2088688e3747233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Aconitine - pharmacology</topic><topic>Animals</topic><topic>Axons - drug effects</topic><topic>Axons - physiology</topic><topic>Biological and medical sciences</topic><topic>Decapodiformes</topic><topic>Diterpenes - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In Vitro Techniques</topic><topic>Invertebrates</topic><topic>Ion Channels - drug effects</topic><topic>Ion Channels - physiology</topic><topic>Loligo edulis</topic><topic>Membrane Potentials</topic><topic>Mollusca</topic><topic>Physiology. Development</topic><topic>Sepioteuthis lessoniana</topic><topic>Toxins, Biological - pharmacology</topic><topic>Veratridine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seyama, I.</creatorcontrib><creatorcontrib>Yamada, K.</creatorcontrib><creatorcontrib>Kato, R.</creatorcontrib><creatorcontrib>Masutani, T.</creatorcontrib><creatorcontrib>Hamada, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyama, I.</au><au>Yamada, K.</au><au>Kato, R.</au><au>Masutani, T.</au><au>Hamada, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grayanotoxin opens Na channels from inside the squid axonal membrane</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1988-02-01</date><risdate>1988</risdate><volume>53</volume><issue>2</issue><spage>271</spage><epage>274</epage><pages>271-274</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>2449919</pmid><doi>10.1016/S0006-3495(88)83088-1</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1988-02, Vol.53 (2), p.271-274
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1330147
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aconitine - pharmacology
Animals
Axons - drug effects
Axons - physiology
Biological and medical sciences
Decapodiformes
Diterpenes - pharmacology
Fundamental and applied biological sciences. Psychology
In Vitro Techniques
Invertebrates
Ion Channels - drug effects
Ion Channels - physiology
Loligo edulis
Membrane Potentials
Mollusca
Physiology. Development
Sepioteuthis lessoniana
Toxins, Biological - pharmacology
Veratridine - pharmacology
title Grayanotoxin opens Na channels from inside the squid axonal membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grayanotoxin%20opens%20Na%20channels%20from%20inside%20the%20squid%20axonal%20membrane&rft.jtitle=Biophysical%20journal&rft.au=Seyama,%20I.&rft.date=1988-02-01&rft.volume=53&rft.issue=2&rft.spage=271&rft.epage=274&rft.pages=271-274&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(88)83088-1&rft_dat=%3Cproquest_pubme%3E15481810%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15481810&rft_id=info:pmid/2449919&rft_els_id=S0006349588830881&rfr_iscdi=true