Grayanotoxin opens Na channels from inside the squid axonal membrane
External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1988-02, Vol.53 (2), p.271-274 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | 2 |
container_start_page | 271 |
container_title | Biophysical journal |
container_volume | 53 |
creator | Seyama, I. Yamada, K. Kato, R. Masutani, T. Hamada, M. |
description | External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium. |
doi_str_mv | 10.1016/S0006-3495(88)83088-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1330147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349588830881</els_id><sourcerecordid>15481810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-e631163a91e24883a8936b3ff418ca502c0bdebb88b964fdfe2088688e3747233</originalsourceid><addsrcrecordid>eNqFkU9v1DAUxC1EVbYLH6GSDwjBIdTPzp-XCxUqpVSq4ACcLcd5YY0Se2tnq_bb19tdreDUkw_z82jmDWOnID6CgPrspxCiLlTZVu8RP6ASiAW8YAuoSlkIgfVLtjggr9hJSn-FAFkJOGbHsizbFtoF-3IVzYPxYQ73zvOwJp_4d8PtynhPY-JDDBN3Prme-Lwinm43rufmPngz8ommLhpPr9nRYMZEb_bvkv3-evnr4ltx8-Pq-uLzTWErKeeCagVQK9MCyRJRGWxV3alhKAGtqYS0ouup6xC7ti6HfiCZS9WIpJqykUot2aed73rTTdRb8nM0o15HN5n4oINx-n_Fu5X-E-40KCWgbLLBu71BDLcbSrOeXLI0jrlE2CTdYA4o5fNgPjICgshgtQNtDClFGg5pQOjtTvppJ70dQSPqp51yniU7_bfK4dd-mKy_3esmWTMO-czWpQPWiAoasb3I-Q7LW9Gdo6iTdeQt9S6SnXUf3DNBHgGJja9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15481810</pqid></control><display><type>article</type><title>Grayanotoxin opens Na channels from inside the squid axonal membrane</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Seyama, I. ; Yamada, K. ; Kato, R. ; Masutani, T. ; Hamada, M.</creator><creatorcontrib>Seyama, I. ; Yamada, K. ; Kato, R. ; Masutani, T. ; Hamada, M.</creatorcontrib><description>External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(88)83088-1</identifier><identifier>PMID: 2449919</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Aconitine - pharmacology ; Animals ; Axons - drug effects ; Axons - physiology ; Biological and medical sciences ; Decapodiformes ; Diterpenes - pharmacology ; Fundamental and applied biological sciences. Psychology ; In Vitro Techniques ; Invertebrates ; Ion Channels - drug effects ; Ion Channels - physiology ; Loligo edulis ; Membrane Potentials ; Mollusca ; Physiology. Development ; Sepioteuthis lessoniana ; Toxins, Biological - pharmacology ; Veratridine - pharmacology</subject><ispartof>Biophysical journal, 1988-02, Vol.53 (2), p.271-274</ispartof><rights>1988 The Biophysical Society</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-e631163a91e24883a8936b3ff418ca502c0bdebb88b964fdfe2088688e3747233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1330147/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349588830881$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7051703$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2449919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seyama, I.</creatorcontrib><creatorcontrib>Yamada, K.</creatorcontrib><creatorcontrib>Kato, R.</creatorcontrib><creatorcontrib>Masutani, T.</creatorcontrib><creatorcontrib>Hamada, M.</creatorcontrib><title>Grayanotoxin opens Na channels from inside the squid axonal membrane</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium.</description><subject>Aconitine - pharmacology</subject><subject>Animals</subject><subject>Axons - drug effects</subject><subject>Axons - physiology</subject><subject>Biological and medical sciences</subject><subject>Decapodiformes</subject><subject>Diterpenes - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In Vitro Techniques</subject><subject>Invertebrates</subject><subject>Ion Channels - drug effects</subject><subject>Ion Channels - physiology</subject><subject>Loligo edulis</subject><subject>Membrane Potentials</subject><subject>Mollusca</subject><subject>Physiology. Development</subject><subject>Sepioteuthis lessoniana</subject><subject>Toxins, Biological - pharmacology</subject><subject>Veratridine - pharmacology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAUxC1EVbYLH6GSDwjBIdTPzp-XCxUqpVSq4ACcLcd5YY0Se2tnq_bb19tdreDUkw_z82jmDWOnID6CgPrspxCiLlTZVu8RP6ASiAW8YAuoSlkIgfVLtjggr9hJSn-FAFkJOGbHsizbFtoF-3IVzYPxYQ73zvOwJp_4d8PtynhPY-JDDBN3Prme-Lwinm43rufmPngz8ommLhpPr9nRYMZEb_bvkv3-evnr4ltx8-Pq-uLzTWErKeeCagVQK9MCyRJRGWxV3alhKAGtqYS0ouup6xC7ti6HfiCZS9WIpJqykUot2aed73rTTdRb8nM0o15HN5n4oINx-n_Fu5X-E-40KCWgbLLBu71BDLcbSrOeXLI0jrlE2CTdYA4o5fNgPjICgshgtQNtDClFGg5pQOjtTvppJ70dQSPqp51yniU7_bfK4dd-mKy_3esmWTMO-czWpQPWiAoasb3I-Q7LW9Gdo6iTdeQt9S6SnXUf3DNBHgGJja9E</recordid><startdate>19880201</startdate><enddate>19880201</enddate><creator>Seyama, I.</creator><creator>Yamada, K.</creator><creator>Kato, R.</creator><creator>Masutani, T.</creator><creator>Hamada, M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19880201</creationdate><title>Grayanotoxin opens Na channels from inside the squid axonal membrane</title><author>Seyama, I. ; Yamada, K. ; Kato, R. ; Masutani, T. ; Hamada, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-e631163a91e24883a8936b3ff418ca502c0bdebb88b964fdfe2088688e3747233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Aconitine - pharmacology</topic><topic>Animals</topic><topic>Axons - drug effects</topic><topic>Axons - physiology</topic><topic>Biological and medical sciences</topic><topic>Decapodiformes</topic><topic>Diterpenes - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In Vitro Techniques</topic><topic>Invertebrates</topic><topic>Ion Channels - drug effects</topic><topic>Ion Channels - physiology</topic><topic>Loligo edulis</topic><topic>Membrane Potentials</topic><topic>Mollusca</topic><topic>Physiology. Development</topic><topic>Sepioteuthis lessoniana</topic><topic>Toxins, Biological - pharmacology</topic><topic>Veratridine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seyama, I.</creatorcontrib><creatorcontrib>Yamada, K.</creatorcontrib><creatorcontrib>Kato, R.</creatorcontrib><creatorcontrib>Masutani, T.</creatorcontrib><creatorcontrib>Hamada, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyama, I.</au><au>Yamada, K.</au><au>Kato, R.</au><au>Masutani, T.</au><au>Hamada, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grayanotoxin opens Na channels from inside the squid axonal membrane</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1988-02-01</date><risdate>1988</risdate><volume>53</volume><issue>2</issue><spage>271</spage><epage>274</epage><pages>271-274</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>2449919</pmid><doi>10.1016/S0006-3495(88)83088-1</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1988-02, Vol.53 (2), p.271-274 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1330147 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Aconitine - pharmacology Animals Axons - drug effects Axons - physiology Biological and medical sciences Decapodiformes Diterpenes - pharmacology Fundamental and applied biological sciences. Psychology In Vitro Techniques Invertebrates Ion Channels - drug effects Ion Channels - physiology Loligo edulis Membrane Potentials Mollusca Physiology. Development Sepioteuthis lessoniana Toxins, Biological - pharmacology Veratridine - pharmacology |
title | Grayanotoxin opens Na channels from inside the squid axonal membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grayanotoxin%20opens%20Na%20channels%20from%20inside%20the%20squid%20axonal%20membrane&rft.jtitle=Biophysical%20journal&rft.au=Seyama,%20I.&rft.date=1988-02-01&rft.volume=53&rft.issue=2&rft.spage=271&rft.epage=274&rft.pages=271-274&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(88)83088-1&rft_dat=%3Cproquest_pubme%3E15481810%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15481810&rft_id=info:pmid/2449919&rft_els_id=S0006349588830881&rfr_iscdi=true |