Computer simulation of action potential propagation in septated nerve fibers
The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is chara...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1987-02, Vol.51 (2), p.177-183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 2 |
container_start_page | 177 |
container_title | Biophysical journal |
container_volume | 51 |
creator | Barach, J.P. Wikswo, J.P. |
description | The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers. |
doi_str_mv | 10.1016/S0006-3495(87)83323-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1329878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349587833234</els_id><sourcerecordid>77433338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-d9243ad8ae8d27d5ecfe42a64d5afa39bda395c813e72390d87b75d14d7ba87f3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo6-zqT1jog4h7aE06SSd9cZHBLxjwoJ5DdVK9Rro7bZIe8N-b-WDQkzkkgfepqpd6Cbll9DWjrH3zlVLa1lx08pVWd5rzhtfiEdkwKZqaUt0-JpsL8pRcp_STUtZIyq7IFdeNFlJuyG4bpmXNGKvkp3WE7MNchaECe_wtIeOcPYzVEsMCDyfdz1XCJUNGV80Y91gNvseYnpEnA4wJn5_fG_L9w_tv20_17svHz9t3u9qKjuXadY3g4DSgdo1yEu2AooFWOAkD8K535ZJWM46q4R11WvVKOiac6kGrgd-Qt6e-y9pP6GyxGGE0S_QTxN8mgDf_KrP_YR7C3jDedFrp0uDluUEMv1ZM2Uw-WRxHmDGsySgleDkHUJ5AG0NKEYfLEEbNIQZzjMEcdmy0MscYjCh1t387vFSd9170F2cdkoVxiDBbny6YKozu2oLdnzAs29x7jCZZj7NF5yPabFzw_zHyB81Mpwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77433338</pqid></control><display><type>article</type><title>Computer simulation of action potential propagation in septated nerve fibers</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Barach, J.P. ; Wikswo, J.P.</creator><creatorcontrib>Barach, J.P. ; Wikswo, J.P.</creatorcontrib><description>The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(87)83323-4</identifier><identifier>PMID: 3828455</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Action Potentials ; Animals ; Astacoidea ; Axons - physiology ; Biological and medical sciences ; Cell Membrane - physiology ; Computer Simulation ; Electric Conductivity ; Fundamental and applied biological sciences. Psychology ; Isolated neuron and nerve. Neuroglia ; Models, Neurological ; Oligochaeta ; Vertebrates: nervous system and sense organs</subject><ispartof>Biophysical journal, 1987-02, Vol.51 (2), p.177-183</ispartof><rights>1987 The Biophysical Society</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-d9243ad8ae8d27d5ecfe42a64d5afa39bda395c813e72390d87b75d14d7ba87f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1329878/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(87)83323-4$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7455896$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3828455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barach, J.P.</creatorcontrib><creatorcontrib>Wikswo, J.P.</creatorcontrib><title>Computer simulation of action potential propagation in septated nerve fibers</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Astacoidea</subject><subject>Axons - physiology</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - physiology</subject><subject>Computer Simulation</subject><subject>Electric Conductivity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>Models, Neurological</subject><subject>Oligochaeta</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo6-zqT1jog4h7aE06SSd9cZHBLxjwoJ5DdVK9Rro7bZIe8N-b-WDQkzkkgfepqpd6Cbll9DWjrH3zlVLa1lx08pVWd5rzhtfiEdkwKZqaUt0-JpsL8pRcp_STUtZIyq7IFdeNFlJuyG4bpmXNGKvkp3WE7MNchaECe_wtIeOcPYzVEsMCDyfdz1XCJUNGV80Y91gNvseYnpEnA4wJn5_fG_L9w_tv20_17svHz9t3u9qKjuXadY3g4DSgdo1yEu2AooFWOAkD8K535ZJWM46q4R11WvVKOiac6kGrgd-Qt6e-y9pP6GyxGGE0S_QTxN8mgDf_KrP_YR7C3jDedFrp0uDluUEMv1ZM2Uw-WRxHmDGsySgleDkHUJ5AG0NKEYfLEEbNIQZzjMEcdmy0MscYjCh1t387vFSd9170F2cdkoVxiDBbny6YKozu2oLdnzAs29x7jCZZj7NF5yPabFzw_zHyB81Mpwk</recordid><startdate>19870201</startdate><enddate>19870201</enddate><creator>Barach, J.P.</creator><creator>Wikswo, J.P.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19870201</creationdate><title>Computer simulation of action potential propagation in septated nerve fibers</title><author>Barach, J.P. ; Wikswo, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-d9243ad8ae8d27d5ecfe42a64d5afa39bda395c813e72390d87b75d14d7ba87f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Astacoidea</topic><topic>Axons - physiology</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - physiology</topic><topic>Computer Simulation</topic><topic>Electric Conductivity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>Models, Neurological</topic><topic>Oligochaeta</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barach, J.P.</creatorcontrib><creatorcontrib>Wikswo, J.P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barach, J.P.</au><au>Wikswo, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation of action potential propagation in septated nerve fibers</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1987-02-01</date><risdate>1987</risdate><volume>51</volume><issue>2</issue><spage>177</spage><epage>183</epage><pages>177-183</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>3828455</pmid><doi>10.1016/S0006-3495(87)83323-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1987-02, Vol.51 (2), p.177-183 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1329878 |
source | MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Action Potentials Animals Astacoidea Axons - physiology Biological and medical sciences Cell Membrane - physiology Computer Simulation Electric Conductivity Fundamental and applied biological sciences. Psychology Isolated neuron and nerve. Neuroglia Models, Neurological Oligochaeta Vertebrates: nervous system and sense organs |
title | Computer simulation of action potential propagation in septated nerve fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20of%20action%20potential%20propagation%20in%20septated%20nerve%20fibers&rft.jtitle=Biophysical%20journal&rft.au=Barach,%20J.P.&rft.date=1987-02-01&rft.volume=51&rft.issue=2&rft.spage=177&rft.epage=183&rft.pages=177-183&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(87)83323-4&rft_dat=%3Cproquest_pubme%3E77433338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77433338&rft_id=info:pmid/3828455&rft_els_id=S0006349587833234&rfr_iscdi=true |