Computer simulation of action potential propagation in septated nerve fibers

The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1987-02, Vol.51 (2), p.177-183
Hauptverfasser: Barach, J.P., Wikswo, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 177
container_title Biophysical journal
container_volume 51
creator Barach, J.P.
Wikswo, J.P.
description The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers.
doi_str_mv 10.1016/S0006-3495(87)83323-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1329878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349587833234</els_id><sourcerecordid>77433338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-d9243ad8ae8d27d5ecfe42a64d5afa39bda395c813e72390d87b75d14d7ba87f3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo6-zqT1jog4h7aE06SSd9cZHBLxjwoJ5DdVK9Rro7bZIe8N-b-WDQkzkkgfepqpd6Cbll9DWjrH3zlVLa1lx08pVWd5rzhtfiEdkwKZqaUt0-JpsL8pRcp_STUtZIyq7IFdeNFlJuyG4bpmXNGKvkp3WE7MNchaECe_wtIeOcPYzVEsMCDyfdz1XCJUNGV80Y91gNvseYnpEnA4wJn5_fG_L9w_tv20_17svHz9t3u9qKjuXadY3g4DSgdo1yEu2AooFWOAkD8K535ZJWM46q4R11WvVKOiac6kGrgd-Qt6e-y9pP6GyxGGE0S_QTxN8mgDf_KrP_YR7C3jDedFrp0uDluUEMv1ZM2Uw-WRxHmDGsySgleDkHUJ5AG0NKEYfLEEbNIQZzjMEcdmy0MscYjCh1t387vFSd9170F2cdkoVxiDBbny6YKozu2oLdnzAs29x7jCZZj7NF5yPabFzw_zHyB81Mpwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77433338</pqid></control><display><type>article</type><title>Computer simulation of action potential propagation in septated nerve fibers</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Barach, J.P. ; Wikswo, J.P.</creator><creatorcontrib>Barach, J.P. ; Wikswo, J.P.</creatorcontrib><description>The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(87)83323-4</identifier><identifier>PMID: 3828455</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Action Potentials ; Animals ; Astacoidea ; Axons - physiology ; Biological and medical sciences ; Cell Membrane - physiology ; Computer Simulation ; Electric Conductivity ; Fundamental and applied biological sciences. Psychology ; Isolated neuron and nerve. Neuroglia ; Models, Neurological ; Oligochaeta ; Vertebrates: nervous system and sense organs</subject><ispartof>Biophysical journal, 1987-02, Vol.51 (2), p.177-183</ispartof><rights>1987 The Biophysical Society</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-d9243ad8ae8d27d5ecfe42a64d5afa39bda395c813e72390d87b75d14d7ba87f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1329878/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(87)83323-4$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7455896$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3828455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barach, J.P.</creatorcontrib><creatorcontrib>Wikswo, J.P.</creatorcontrib><title>Computer simulation of action potential propagation in septated nerve fibers</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Astacoidea</subject><subject>Axons - physiology</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - physiology</subject><subject>Computer Simulation</subject><subject>Electric Conductivity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>Models, Neurological</subject><subject>Oligochaeta</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo6-zqT1jog4h7aE06SSd9cZHBLxjwoJ5DdVK9Rro7bZIe8N-b-WDQkzkkgfepqpd6Cbll9DWjrH3zlVLa1lx08pVWd5rzhtfiEdkwKZqaUt0-JpsL8pRcp_STUtZIyq7IFdeNFlJuyG4bpmXNGKvkp3WE7MNchaECe_wtIeOcPYzVEsMCDyfdz1XCJUNGV80Y91gNvseYnpEnA4wJn5_fG_L9w_tv20_17svHz9t3u9qKjuXadY3g4DSgdo1yEu2AooFWOAkD8K535ZJWM46q4R11WvVKOiac6kGrgd-Qt6e-y9pP6GyxGGE0S_QTxN8mgDf_KrP_YR7C3jDedFrp0uDluUEMv1ZM2Uw-WRxHmDGsySgleDkHUJ5AG0NKEYfLEEbNIQZzjMEcdmy0MscYjCh1t387vFSd9170F2cdkoVxiDBbny6YKozu2oLdnzAs29x7jCZZj7NF5yPabFzw_zHyB81Mpwk</recordid><startdate>19870201</startdate><enddate>19870201</enddate><creator>Barach, J.P.</creator><creator>Wikswo, J.P.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19870201</creationdate><title>Computer simulation of action potential propagation in septated nerve fibers</title><author>Barach, J.P. ; Wikswo, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-d9243ad8ae8d27d5ecfe42a64d5afa39bda395c813e72390d87b75d14d7ba87f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Astacoidea</topic><topic>Axons - physiology</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - physiology</topic><topic>Computer Simulation</topic><topic>Electric Conductivity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>Models, Neurological</topic><topic>Oligochaeta</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barach, J.P.</creatorcontrib><creatorcontrib>Wikswo, J.P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barach, J.P.</au><au>Wikswo, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation of action potential propagation in septated nerve fibers</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1987-02-01</date><risdate>1987</risdate><volume>51</volume><issue>2</issue><spage>177</spage><epage>183</epage><pages>177-183</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>The nonlinear, core-conductor model of action potential propagation down axisymmetric nerve fibers is adapted for an implicit, numerical simulation by computer solution of the differential equations. The calculation allows a septum to be inserted in the model fiber; the thin, passive septum is characterized by series resistance Rsz and shunt resistance Rss to the grounded bath. If Rsz is too large or Rss too small, the signal fails to propagate through the septum. Plots of the action potential profiles for various axial positions are obtained and show distortions due to the presence of the septum. A simple linear model, developed from these simulations, relates propagation delay through the septum and the preseptal risetime to Rsz and Rss. This model agrees with the simulations for a wide range of parameters and allows estimation of Rsz and Rss from measured propagation delays at the septum. Plots of the axial current as a function of both time and position demonstrate how the presence of the septum can cause prominent local reversals of the current. This result, not previously described, suggests that extracellular magnetic measurements of cellular action currents could be useful in the biophysical study of septated fibers.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>3828455</pmid><doi>10.1016/S0006-3495(87)83323-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1987-02, Vol.51 (2), p.177-183
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1329878
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Action Potentials
Animals
Astacoidea
Axons - physiology
Biological and medical sciences
Cell Membrane - physiology
Computer Simulation
Electric Conductivity
Fundamental and applied biological sciences. Psychology
Isolated neuron and nerve. Neuroglia
Models, Neurological
Oligochaeta
Vertebrates: nervous system and sense organs
title Computer simulation of action potential propagation in septated nerve fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20of%20action%20potential%20propagation%20in%20septated%20nerve%20fibers&rft.jtitle=Biophysical%20journal&rft.au=Barach,%20J.P.&rft.date=1987-02-01&rft.volume=51&rft.issue=2&rft.spage=177&rft.epage=183&rft.pages=177-183&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(87)83323-4&rft_dat=%3Cproquest_pubme%3E77433338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77433338&rft_id=info:pmid/3828455&rft_els_id=S0006349587833234&rfr_iscdi=true